HZB builds undulator for SESAME in Jordan

<span>The APPLE II UE56 double undulator generates brilliant light with variable polarization.</span>

The APPLE II UE56 double undulator generates brilliant light with variable polarization. © HZB

The Helmholtz-Zentrum Berlin is building an APPLE II undulator for the SESAME synchrotron light source in Jordan. The undulator will be used at the Helmholtz SESAME beamline (HESEB) that will be set up there by five Helmholtz Centres. The Helmholtz Association is investing 3.5 million euros in this project coordinated by DESY.

SESAME stands for "Synchrotron Light for Experimental Science and Applications in the Middle East" and provides brilliant X-ray light for research purposes. The third-generation synchrotron radiation source became operational in 2017. Egypt, Iran, Israel, Jordan, Pakistan, the Palestinian Authority, Turkey, and Cyprus are cooperating on this unique project to provide scientists from the Middle East with access to one of the most versatile tools for research.

New beamline for soft x-rays

Thus far, SESAME has four beamlines and will now receive a fifth meant to generate "soft" X-ray light in the energy range between 70 eV and 1800 eV. This X-ray light is particularly suitable for investigating surfaces and interfaces of various materials, for observing certain chemical and electronic processes, and for non-destructive analysis of cultural artefacts. The new beamline will be constructed as the Helmholtz SESAME Beamline (HESEB) by the Helmholtz Centres DESY (coordinating Centre), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) as well as the Karlsruhe Institute of Technology (KIT).

Undulator made by HZB

The team headed Dr. Johannes Bahrdt at the HZB has assumed the task of constructing and commissioning an undulator for the new beamline. Undulators consist of two opposing arrays of magnets that force the ultrafast electron bunches into wave-like motion. At each reversal point of the wave, the electron bunches emit light that superposes itself on the previously emitted light to produce a coherent, laser-like beam – synchrotron light.

APPLE II UE56 provides polarized light

Johannes Bahrdt has already developed several types of undulators, including the APPLE II UE56 undulator that has been used very successfully at BESSY II for almost 20 years. The APPLE II UE56 double undulator generates brilliant light with variable polarization. This can be used, for example, to study magnetic nanostructures. For SESAME, a UE56 module will now be completely rebuilt, equipped with new magnets and brought up to the state of the art. The undulator team will train their SESAME colleagues and later support them via remote maintenance.

SESAME and HZB

SESAME has a long history with the HZB: at the heart of SESAME are also some accelerator components from BESSY I that were dismantled in 1998. The Helmholtz Association is supporting the Helmholtz SESAME Beamline project (HESEB) with a total of 3.5 million euros. The project will start at the beginning of 2019 and should be completed in four years.

  • Copy link

You might also be interested in

  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    Science Highlight
    21.10.2025
    BESSY II: Phosphorus chains – a 1D material with 1D electronic properties
    For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties in phosphorus. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
  • Did marine life in the palaeocene use a compass?
    Science Highlight
    20.10.2025
    Did marine life in the palaeocene use a compass?
    Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.