Themen: Kooperationen (132) Beschleunigerphysik (172) Technologietransfer (44)

Nachricht    26.11.2018

HZB baut Undulator für SESAME in Jordanien

Der APPLE II UE56 Doppelundulator erzeugt brillantes Licht mit variabler Polarisation.
Copyright: HZB

Das Helmholtz-Zentrum Berlin baut einen APPLE II Undulator für die Synchrotron-Lichtquelle SESAME in Jordanien. Der Undulator wird an der Helmholtz- SESAME-Beamline (HESEB) eingesetzt, die von fünf Helmholtz-Zentren an SESAME aufgebaut wird. Die Helmholtz-Gemeinschaft investiert 3,5 Millionen Euro in das Projekt, das von DESY koordiniert wird.

SESAME steht für “Synchrotron-light for Experimental Science and Applications in the Middle East” und stellt brillantes Röntgenlicht für die Forschung zur Verfügung. Die Synchrotronstrahlungsquelle der dritten Generation wurde 2017 in Betrieb genommen. Ägypten, Iran, Israel, Jordanien, Pakistan, die palästinensischen Autonomiegebiete, die Türkei und Zypern kooperieren für dieses einzigartige Projekt, um Wissenschaftlerinnen und Wissenschaftlern aus dem Nahen Osten Zugang zu einem der vielseitigsten Werkzeuge der Forschung zu gewährleisten. Bisher gibt es vier Strahlrohre an SESAME.

Neue Beamline für weiches Röntgenlicht

Nun wird SESAME ein fünftes Strahlrohr erhalten. Es soll „weiches“ Röntgenlicht im Energiebereich zwischen 70 eV und 1800 eV erzeugen. Dieses Röntgenlicht eignet sich besonders dafür, Oberflächen und Grenzflächen von unterschiedlichen Materialien zu untersuchen, bestimmte chemische und elektronische Prozesse zu beobachten oder Kulturschätze zerstörungsfrei zu analysieren. Das neue Strahlrohr wird als Helmholtz-SESAME Beamline (HESEB) von den Helmholtz-Zentren DESY (Federführung), Forschungszentrum Jülich, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Helmholtz-Zentrum Berlin (HZB) sowie Karlsruher Institut für Technologie (KIT) aufgebaut.

Der Undulator kommt vom HZB

Das Team um Dr. Johannes Bahrdt am HZB hat die Aufgabe übernommen, einen Undulator für das neue Strahlrohr zu konstruieren und in Betrieb zu nehmen. Undulatoren bestehen aus zwei sich gegenüberstehenden Anordnungen von Magneten, die die ultraschnellen Elektronenpakete zu einer wellenartigen Bewegung zwingen. Dabei geben die Elektronenpakete an jedem Umkehrpunkt der Welle Licht ab, das sich gegenseitig verstärkt, so dass ein laserartiger Strahl entsteht: das Synchrotronlicht. Johannes Bahrdt hat bereits mehrere Undulator-Typen entwickelt, darunter auch den APPLE II UE56-Undulator, der an BESSY II seit bald 20 Jahren sehr erfolgreich eingesetzt wird. Der APPLE II UE56 Doppelundulator erzeugt brillantes Licht mit variabler Polarisation, mit dem sich zum Beispiel magnetische Nanostrukturen untersuchen lassen. Für SESAME wird nun ein UE56-Modul komplett umgebaut, mit neuen Magneten versehen und auf den neuesten Stand der Technik gebracht. Dabei wird das Undulator-Team die Kollegen an SESAME ausbilden und später über eine Fernwartung unterstützen.

HZB und SESAME

Mit dem HZB verbindet SESAME eine lange Vorgeschichte: Denn im Herzen von SESAME stecken auch einige Beschleuniger-Komponenten aus BESSY I, der Vorgängerquelle von BESSY II, die 1998 abgebaut wurde. Die Helmholtz-Gemeinschaft fördert die Helmholtz-SESAME-Beamline mit insgesamt 3,5 Millionen Euro. Das Projekt startet Anfang 2019 und soll in vier Jahren abgeschlossen werden.

 


           



Das könnte Sie auch interessieren
  • <p>Die Modellierung bezieht sich auf eine kubische Kristallstruktur (Pyrochlor-Gitter). Dabei wurden magnetische Wechselwirkungen nicht nur zwischen&nbsp; n&auml;chsten Nachbarn einbezogen, sondern auch noch zu den &uuml;bern&auml;chsten Nachbarn (siehe Zeichnung).</p>SCIENCE HIGHLIGHT      21.01.2019

    Neue Erkenntnisse über magnetische Quanteneffekte in Festkörpern

    Mit einer neuen theoretischen Methode gelang es einer internationalen Kooperation erstmals, magnetische Quanteneffekte im bekannten 3D Pyrochlor-Heisenberg-Modell systematisch zu untersuchen. Überraschende Erkenntnis: nur bei kleinen Spinwerten bilden sich quantenphysikalische Phasen. [...]


  • <p>Marcus B&auml;r, hier im EMIL-Labor des HZB, hat nun eine Professur an der FAU in Erlangen-N&uuml;rnberg angenommen.</p>NACHRICHT      11.01.2019

    Marcus Bär nimmt W2-Professur für Röntgenspektroskopie in Erlangen-Nürnberg an

    Prof. Marcus Bär hat den Ruf auf eine Professur für Röntgenspektroskopie an der Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) angenommen. Bär leitet am Helmholtz-Zentrum Berlin (HZB) die Abteilung „Grenzflächendesign“. Die neue W2-Professur wurde in Kooperation mit dem HZB und dem Forschungszentrum Jülich eingerichtet, um das Helmholtz-Institut Erlangen-Nürnberg für Erneuerbare Energien (HI ERN) zu verstärken. Bär wird damit in Zukunft auch HI ERN Forschungsthemen am HZB bearbeiten und so zur Intensivierung der Zusammenarbeit beitragen. [...]


  • <p>(a) Neutronen-Eigenspannungsmessung an einer Schwei&szlig;probe aus handels&uuml;blichen Stahl, (b) Magnetfeldmessung, (c) Schwei&szlig;nahtquerschliff.</p>SCIENCE HIGHLIGHT      21.12.2018

    Neutronenforschung hilft bei der Entwicklung von zerstörungsfreien Prüfverfahren

    Materialermüdung zeigt sich häufig zuerst daran, dass im Innern des Materials Bereiche mit stark unterschiedlichen Eigenspannungen aneinandergrenzen. An der Neutronenquelle BER II am HZB hat ein Team der Bundesanstalt für Materialforschung und –prüfung (BAM) die Eigenspannungen von Schweißnähten aus ferromagnetischem Stahl analysiert. Die Ergebnisse helfen zerstörungsfreie elektromagnetische Prüfverfahren zu verbessern. [...]




Newsletter