Wasser ist homogener als gedacht

Mit Röntgenlicht (blau) werden Wassermoleküle angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen über Wasserstoffbrücken gewinnen.

Mit Röntgenlicht (blau) werden Wassermoleküle angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen über Wasserstoffbrücken gewinnen. © T. Splettstoesser/HZB

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich aus, wenn es gefriert und zeigt weitere Anomalien, wenn sich Temperatur oder Druck verändern. Das sogenannte Phasendiagramm von Wasser ist relativ komplex. Wilhelm Conrad Röntgen hatte Ende des 19.ten Jahrhunderts eine Erklärung dafür vorgeschlagen: Flüssiges Wasser könnte aus einer Mischung von zwei unterschiedlichen Phasen bestehen, in einer befänden sich die Wassermoleküle in einem geordneten Zustand so wie im Eis, in der anderen Phase dagegen wären die Wassermoleküle völlig ungebunden wie in einem Gas. Röntgen selbst hatte Zweifel an diesem „Mischungsmodell“. Denn es ist deutlich komplizierter als das „Kontinuumsmodell“, das davon ausgeht, dass sich in flüssigem Zustand die Wassermoleküle über Wasserstoffbrückenbindungen lose und ungeordnet vernetzen. Doch tatsächlich schienen in den letzten Jahren neue Röntgenstudien eher das Mischungsmodell zu stützen.

Messungen an drei Lichtquellen

Nun hat ein internationales Team um Prof. Alexander Föhlisch (HZB und Universität Potsdam) an der Synchrotronlichtquelle BESSY II sowie an der European Synchrotron Radiation Facility ESRF und der Swiss Light Source Wasserproben mit modernsten röntgenspektroskopischen Methoden untersucht. Die Messdaten zeigen, dass bei Umgebungsbedingungen Wassermoleküle über Wasserstoffbrückenbindungen mit ihren nächsten Nachbarn nahezu tetahedral koordiniert sind. Pro Molekül gibt es jeweils 1,74 ± 2,1% Akzeptor- und  Donator-H-Bindungen, also insgesamt fast vier Bindungen, was eine tetrahedrale Koordination ermöglicht.

Kontinuumsmodell passt

Darüber hinaus konnten die Wissenschaftler aus den Daten auch ermitteln, wie sich Wassermoleküle mit ihren übernächsten Nachbarn koordinieren. Die Röntgenspektren spiegeln auch die unterschiedliche Dynamik von verschiedenen Anregungsprozessen, so findet die kurzzeitige Bildung oder Lösung von Wasserstoffbrücken tausendmal schneller statt als eine Anregung der Wassermoleküle selbst. Die Ergebnisse zeigen, dass das Kontinuumsmodell Wasser bei Umgebungsbedingungen angemessen beschreibt.

Die Studie geht auf weitere offene Fragen im Phasendiagramm von Wasser ein, insbesondere zur möglichen Existenz eines zweiten kritischen Punktes im sogenannten "Niemandsland" des unterkühlten Wassers.


Die Studie wurde in den Proceedings der National Academy of Science, PNAS 2019, veröffentlicht: Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Johannes Niskanen, Mattis Fondell, Sebastian Eckert, Raphael M. Jay, Annette Pietzsch, Vinicius Vaz da Cruz, Alexander Föhlisch

 DOI:10.1073/pnas.1815701116

 

 

 

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.