Keywords: accelerator physics (174) BESSY II (266) HZB own research (95)

Science Highlight    02.04.2019

HZB contributions to special edition on Ultrafast Dynamics with X-ray Methods

At the end of his contribution, Phillippe Wernet makes a great arch from the past (Opticae Thesaurus, 1572) of research with light to the future.
Copyright: Wikimedia cc

In this theme issue leading researchers discuss
recent work on the ultrafast electronic and structural
dynamics of matter using a new generation of short
duration X-ray photon sources.
Copyright: Royal Society

In the new special issue of the "Philosophical Transactions of the Royal Society of London", internationally renowned experts report on new developments in X-ray sources and ultrafast time-resolved experiments. HZB physicists have also been invited to contribute.

Almost 350 years after Isaac Newton's ground-breaking paper "Theory of Light and Colors (1671)", the world's oldest scientific journal “Philosophical Transactions” is now once again dedicated to light. The special issue on “Ultrafast Dynamics with X-ray Methods” is aimed at researchers who want to investigate biological, chemical or physical processes and obtain an overview of new developments in light sources and the methods available there. Dynamic processes in materials can be analyzed with high resolution and short pulses at X-ray light sources using ultrafast methods.

Femtoslicing and BESSY VSR

The special issue provides a comprehensive overview of current advances in the generation of ultra-short X-ray pulses by light sources such as Free Electron Lasers (FELs), High Harmonic Generation (HHG) laser sources and synchrotron radiation sources. An article in collaboration with Dr. Karsten Holldack, HZB, presents FEls and Laser sources but also classifies storage ring based methods such as “Femtoslicing”  and BESSY VSR. These methods combine highly brilliant synchrotron light with a special time structure and thus allow to address unique experimental questions that cannot be answered at other sources. This complements and expands the portfolio of accelerator-based sources.

Ultra fast spectroscopy for photochemistry

An important contribution is dedicated to photochemistry, an area that focuses on processes such as photosynthesis, the dynamics of which are still largely unexplored. Using ultra-fast spectroscopy at FELs, HHG sources or at the synchrotron with BESSY VSR, methods are now available to measure in detail, for example, excitations of metallo-proteins and the subsequent reactions ; such experiments provide data that are indispensable, for example, for understanding photocatalysis of solar fuels. This article was written by Prof. Dr. Philippe Wernet, formerly a senior scientist at the HZB, and now a professor at Uppsala University, Sweden.

To the publications:

Measurement of ultrafast electronic and structural dynamics with X-rays; J. P. Marangos (ed.)

doi: 10.1098/rsta/377/2145

Recent Advances in Ultrafast X-ray Sources; Robert Schoenlein, Thomas Elsaesser, Karsten Holldack, Zhirong Huang, Henry Kapteyn, Margaret Murnane, Michael Woerner

doi: 10.1098/rsta.2018.0384

Chemical interactions and dynamics with femtosecond X-ray spectroscopy and the role of X-ray free-electron lasers; Philippe Wernet

doi: 10.1098/rsta.2017.0464



You might also be interested in
  • <p>The enzyme MHETase is a huge and complex molecule. MHET-molecules from PET plastic dock at the active site inside the MHETase and are broken down into their basic building blocks.</p>SCIENCE HIGHLIGHT      12.04.2019

    "Molecular scissors" for plastic waste

    A research team from the University of Greifswald and Helmholtz-Zentrum-Berlin (HZB) has solved the molecular structure of the important enzyme MHETase at BESSY II. MHETase was discovered in bacteria and together with a second enzyme - PETase - is able to break down the widely used plastic PET into its basic building blocks. This 3D structure already allowed the researchers to produce a MHETase variant with optimized activity in order to use it, together with PETase, for a sustainable recycling of PET. The results have been published in the research journal Nature Communications. [...]

  • <p>The SEM shows Molybdenum sulfide deposited at room temperature.</p>SCIENCE HIGHLIGHT      04.04.2019

    Catalyst research for solar fuels: Amorphous molybdenum sulphide works best

    Efficient and inexpensive catalysts will be required for production of hydrogen from sunlight. Molybdenum sulphides are considered good candidates. A team at HZB has now explained what processes take place in molybdenum sulphides during catalysis and why amorphous molybdenum sulphide works best. The results have been published in the journal ACS Catalysis. [...]

  • <p>Dr. Godehard W&uuml;stefeld was awarded the Horst Klein Research Prize.</p> <p></p> <p></p>NEWS      25.03.2019

    Godehard Wüstefeld receives the Horst Klein Research Prize

    The physicist Dr. Godehard Wüstefeld was awarded the Horst Klein Research Prize at the annual conference of the German Physical Society. The award recognizes his outstanding scientific achievements in accelerator physics in the development of BESSY II and BESSY VSR. [...]