Katalysatorforschung für Solare Brennstoffe: Amorphes Molybdänsulfid funktioniert am besten

Die Rasterelektronenmikroskopie zeigt einen Molybdänsulfidfilm, der bei Raumtemperatur aufgebracht wurde.

Die Rasterelektronenmikroskopie zeigt einen Molybdänsulfidfilm, der bei Raumtemperatur aufgebracht wurde. © HZB

Spektroskopische Messungen zeigen, wie sich im Lauf der Zeit katatylisch aktive Nanoinseln aus MoS<sub>2</sub> bilden.

Spektroskopische Messungen zeigen, wie sich im Lauf der Zeit katatylisch aktive Nanoinseln aus MoS2 bilden. © HZB

Für die Produktion von Wasserstoff mit Sonnenlicht werden effiziente und preisgünstige Katalysatoren gebraucht. Molybdänsulfide gelten als gute Kandidaten. Nun hat ein Team am HZB aufgeklärt, welche Prozesse während der Katalyse an  Molybdänsulfiden ablaufen und wieso ausgerechnet amorphes Molydänsulfid am besten funktioniert. Die Ergebnisse wurden im Fachjournal ACS-Catalysis veröffentlicht.

Mit Sonnenlicht lässt sich nicht nur Strom erzeugen, sondern auch Wasserstoff. Wasserstoff ist ein klimaneutraler Brennstoff, der Energie chemisch speichert und bei Bedarf wieder abgibt: entweder direkt über Verbrennung (wobei nur Wasser entsteht) oder als elektrische Energie in einer Brennstoffzelle. Doch um mit Sonnenlicht Wasserstoff zu produzieren, werden Katalysatoren benötigt, die die elektrolytische Aufspaltung von Wasser in Sauerstoff und Wasserstoff beschleunigen.

Auf die Herstellung kommt es an

Eine besonders interessante Materialklasse für Katalysatoren für die Wasserstoff­ent­wicklung sind Molybdänsulfide (MoSx). Sie sind deutlich günstiger als Katalysatoren aus Platin oder Ruthenium. In einer umfangreichen Studie hat ein Team um Prof. Dr. Sebastian Fiechter am HZB-Institut für Solare Brennstoffe nun eine Reihe von Molybdänsulfid-Schichten hergestellt und untersucht. Die Proben wurden bei verschiedenen Temperaturen auf einem elektrisch leitenden Substrat abgeschieden, von Raumtemperatur (RT) bis 500 °C. Dabei ändern sich mit zunehmender Abscheidungstemperatur Morphologie und Struktur der Schichten (siehe SEM-Bilder). Während bei höheren Temperaturen kristalline Bereiche entstehen, ist Molybdänsulfid, das bei Raumtemperatur abgeschieden wurde, amorph. Genau diese amorphen Molybdänsulfidproben besitzen nach einer Aktivierungsphase die höchste katalytische Aktivität. 

Amorphe Proben: ein höllischer Geruch

Dabei setzt ein Katalysator aus amorphem Molybdänsulfid bei der Elektrolyse von Wasser nicht nur Wasserstoff, sondern in der Anfangsphase auch Schwefelwasser­stoffgas frei. Der Schwefel dafür musste aus dem Katalysatormaterial stammen, das bei diesem Prozess seine katalytische Aktivität erstaunlicherweise deutlich verbessert. Fiechter und sein Team haben diesen Prozess nun gründlich unter die Lupe genommen und schlagen eine Erklärung für diesen Befund vor:

Spektroskopie bringt Aufschluss

Sie untersuchten Proben aus amorphen Molybdänsulfid im Einsatz als Katalysator bei der Wasserspaltung mit verschiedenen spektroskopischen Methoden, darunter auch in-situ Raman-Spektroskopie. Diese Messungen zeigen, dass sich in amorphen Molybdänsulfid-Proben durch das Austreten von Schwefel aus Molybdänclustern mit der Zeit nanokristalline Bereiche von Molydändisulfid (MoS2) bilden. Zeitgleich entsteht immer weniger Schwefelwasserstoff, so dass die Wasserstoffproduktion dominant wird.

Nanokristalline Inseln

„Wir können aus den Messdaten ableiten, dass sich durch das Austreten von Schwefel schwefelarme Bereiche mit nanokristallinen MoS2-Inseln bilden. Diese Inseln fungieren als katalytisch aktive Teilchen“, erklärt Fanxing Xi, die die Messungen im Rahmen ihrer Promotion durchgeführt hat. „Diese Einblicke können dazu beitragen, die Aktivität und Stabilität dieses vielversprechenden Katalysators für die Wasserstoffentwicklung im Prozess der Wasserspaltung weiter zu verbessern und das Material an einen mit Sonnenlicht betriebenen Elektrolyseur anzukoppeln“, sagt Fiechter.

 

Zur Publikation in ACS Catalysis (2019): Structural Transformation Identification of Sputtered Amorphous MoSx as an Efficient Hydrogen-Evolving Catalyst during Electrochemical Activation; Fanxing Xi, Peter Bogdanoff, Karsten Harbauer, Paul Plate, Christian Höhn, Jörg Rappich, Bin Wang, Xiaoyu Han, Roel van de Krol, and Sebastian Fiechter.

Doi: 10.1021/acscatal.8b04884

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.