3D tomographic imagery reveals how lithium batteries age

Tomography of a lithium electrode in its initial condition.

Tomography of a lithium electrode in its initial condition.

</p> <p class="MsoPlainText">Changes are visible after the first charging and discharging cycles.

Changes are visible after the first charging and discharging cycles.

After a longer period of operation, areas form that reduce performance and can cause short-circuits.

After a longer period of operation, areas form that reduce performance and can cause short-circuits. © M. Osenberg / I. Manke / HZB

Lithium batteries lose amp-hour capacity over time. Microstructures can form on the electrodes with each new charge cycle, which further reduces battery capacity. Now an HZB team together with battery researchers from Forschungszentrum Jülich, the University of Munster, and partners in China have documented the degradation process of lithium electrodes in detail for the first time. They achieved this with the aid of a 3D tomography process using synchrotron radiation at BESSY II (HZB) as well at the Helmholtz-Zentrum Geesthacht (HZG). Their results have been published open access in the scientific journal "Materials Today".

Whether electric mobility, robotics, or IT - lithium batteries are simply used everywhere. Despite decades of improvements, it has not yet been possible to prevent such batteries from "ageing". Amp-hour capacity is lost with every charge cycle. The processes that lead to this are roughly understood. Now an international team headed by HZB researcher Dr. Ingo Manke has been able to observe with microscopic precision exactly what happens inside the battery at the interfaces between the electrodes during migration of the lithium ions.

3D insights into lithium cells

Manke is an expert in 3D synchrotron tomography, a method that utilises particularly intense X-rays. 3D images can be created of the interior of samples using this non-destructive imaging method with particularly high precision that is available on the BAM beamline at BESSY II. His team investigated a number of different lithium cells during charging and discharging under different cycle conditions. All cells studied had one side of the electrode made of pure lithium, while the other side was constructed of a selection of different electrode materials. Part of the investigation also took place at the Helmholtz-Zentrum Geesthacht.

Formation of microstructures

The tomographic imagery shows how a layer forms between the separator layer and the lithium electrode characterised by microscopic features after only a few charge/discharge cycles. The microscopic features of this layer consist of reaction compounds that form in the electrolyte and can take different forms – from a rather disordered slurry, to moss-like structures, to needle-shaped dendrites that can even cause dangerous short circuits in the battery.

“This gives us for the first time a complete picture of the degradation mechanism in lithium electrodes”, says Manke. It is not only of interest for fundamental understanding of the aging processes in batteries, but also provides valuable directions in the design of more durable batteries.

arö

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.