Laser-driven Spin Dynamics in Ferrimagnets: How does the Angular Momentum flow?

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy.

Experiments at the femtoslicing facility of BESSY II revealed the ultrafast angular momentum flow from Gd and Fe spins to the lattice via orbital moment during demagnetization of GdFe alloy. © R. Abrudan/HZB

When exposed to intense laser pulses, the magnetization of a material can be manipulated very fast. Fundamentally, magnetization is connected to the angular momentum of the electrons in the material. A team of researchers led by scientists from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) has now been able to follow the flow of angular momentum during ultrafast optical demagnetization in a ferrimagnetic iron-gadolinium alloy at the femtoslicing facility of BESSY II. Their results are helpful to understand the fundamental processes and their speed limits. The study is published in Physical Review Letters.

Illumination with an ultrashort laser pulse is a means to demagnetize a material very fast - for the prototypical ferromagnets iron, cobalt and nickel, for example, the magnetization is extinguished within about one picosecond (10-12 s) after the laser pulse has hit the material. This has led to the question, through which channels the angular momentum associated with the magnetization is transferred to other reservoirs during the short time available. Researchers from MBI in Berlin together with scientists from Helmholtz Zentrum Berlin and Nihon University, Japan, have now been able to follow this flow of angular momentum in detail for an iron-gadolinium alloy. In this ferrimagnetic material, adjacent iron (Fe) and gadolinium (Gd) atoms have magnetization with opposite direction.

The researchers have used ultrashort x-ray pulses at the femtoslicing facility of BESSY II to monitor the absorption of circularly polarized x-rays by the Fe and Gd atoms as a function of time after previous laser excitation. This approach is unique in that it allows tracking the magnetic moment during the ultrafast demagnetization at both types of atoms individually. Even more, it is possible to distinguish angular momentum stored in the orbital motion vs. in the spin of the electrons when the respective absorption spectra are analyzed.

W With this detailed “x-ray vision”, the scientists found that during demagnetization process of GdFe alloy the angular momentum flows from Gd and Fe spins to the orbital moments and eventually to the lattice. This means that the surrounding lattice acts as 100 % sink of angular momentum for the demagnetizing Fe and Gd spins on a sub-picosecond timescale.

Given that short laser pulses can also be used to permanently switch magnetization and thus write bits for magnetic data recording, the insight in the dynamics of these fundamental mechanisms is of relevance to develop new approaches to write data to mass data storage media much faster than possible today.

 

 

 

MBI/HZB

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.