Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung.

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung. © R. Abrudan/HZB

Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Die Belichtung mit einem ultrakurzen Laserpuls erlaubt es, ein Material sehr schnell zu entmagnetisieren - für die prototypischen Ferromagnete Eisen, Kobalt und Nickel zum Beispiel wird die Magnetisierung innerhalb von etwa einer Pikosekunde (10-12 s) nach dem Auftreffen des Laserpulses auf das Material ausgelöscht. Daraus ergibt sich die Frage, über welche Kanäle der mit der Magnetisierung verbundene Drehimpuls während der kurzen verfügbaren Zeit auf andere Reservoire übertragen wird.

Nun konnte eine internationale Kooperation von Forschenden bei BESSY II den Drehimpulstransfer in einer Probe aus Eisen-Gadolinium erstmals im Detail verfolgen. An der Studie unter Federführung von Dr. Ilie Radu (MBI) und Prof. Stefan Eisebitt (TU Berlin, MBI) haben auch Teams des HZB sowie der Nihon University in Japan mitgewirkt.

Experiment an der Femtoslicing Beamline

Die Eisen-Gadolinium-Probe ist ferrimagnetisch: benachbarte Eisen (Fe)- und Gadolinium (Gd)-Atome sind in entgegengesetzter Richtung magnetisiert. Die Proben wurden zunächst mit Laserstrahlung angeregt und dann mit ultrakurzen, zirkular polarisierten Röntgenpulsen an der Femtoslicing-Beamline von BESSY II untersucht. Dadurch ließ sich die unterschiedliche magnetfeldabhängige Absorption zirkular polarisierter Röntgenpulse durch die Fe- und Gd-Atome als Funktion der Zeit beobachten.

Dieser Ansatz ermöglicht es, die ultraschnelle Entmagnetisierung sowohl beim Element Eisen als auch beim Gadolinium jeweils einzeln zu verfolgen. Darüber hinaus ist es sogar möglich, bei der Analyse der jeweiligen Absorptionsspektren zwischen dem in der Bahnbewegung und im Spin der Elektronen gespeicherten Drehimpuls zu unterscheiden.

Mit diesem detaillierten "Röntgenbild" fanden die Wissenschaftler heraus, dass während des Entmagnetisierungsprozesses der GdFe-Legierung der Drehimpuls von Gd- und Fe-Spins zu den Orbitalmomenten und schließlich zum Gitter fließt. Und zwar auf einer Zeitskala von weniger als einer Picosekunde.

Schnellere Datenspeicherung

Da kurze Laserpulse auch zum permanenten Umschalten der Magnetisierung und damit zum Schreiben von Bits für die magnetische Datenspeicherung verwendet werden können, ist der Einblick in die Dynamik dieser grundlegenden Mechanismen von großer Bedeutung, um neue Ansätze zu entwickeln, die es ermöglichen, Daten viel schneller als heute auf Massenspeichermedien zu schreiben.

 

MBI/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.
  • Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Nachricht
    20.06.2025
    Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Am 28. Juni ist es wieder so weit: Die Lange der Wissenschaften findet von 17 - 0 Uhr in Berlin und auch in Adlershof statt. Werfen Sie einen Blick hinter die Kulissen unserer spannenden Forschung!
  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.