Development of a miniaturised EPR spectrometer

© Benedikt Schlecker

The "EPR on a Chip" project did start on June 3. 2019 with a kick off meeting in Berlin at HZB.

The "EPR on a Chip" project did start on June 3. 2019 with a kick off meeting in Berlin at HZB. © HZB

Several research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin.

Electron paramagnetic resonance (EPR) provides detailed information about the material's inner structure, down to the atomic level, via the excitation of electron spin in the material. EPR spectroscopy is an important instrument in biophysics, chemistry and medical diagnostics, but is also used in research on energy materials such as catalysts, battery electrodes and solar cell components.

However, EPR spectrometers are usually large and expensive devices that can only be found in particularly well-equipped research laboratories. In addition, it is very difficult to perform investigations under real process conditions (operando measurement) with conventional EPR instruments.

But there is another way: The first demo version of a miniaturized EPR spectrometer was presented in 2017. As part of the BMBF project "EPRoC", a chip-based electron paramagnetic resonance spectroscopy (EPRoC) is to be developed under the direction of Prof. Dr. Klaus Lips and in close cooperation with the University of Stuttgart, the Max Planck Institute for Chemical Energy Conversion, the Karlsruhe Institute of Technology and the Bruker company.

The EPR spectrometer is miniaturized to chip size so that it can even be inserted inside the sample. The aim is to use EPRoC to directly analyze growth processes of thin films for photovoltaics and to investigate and improve catalytic processes during the production of solar hydrogen. This would allow to elucidate how structure formation on the nanoscale is related to the functionality of processes and materials.

During the three-year term of the project, the partners will explore the potential of the technology by further improving the efficiency of the processes and components and reducing costs. In addition, they aim to use EPRoC technology to dramatically improve the sensitivity of nuclear magnetic resonance (NMR) spectrometers. This could also have a long-term impact on magnetic resonance imaging used in medicine.

The findings should ensure that EPRoC technology can be developed to market maturity within the next ten years. The miniaturisation of EPR will open up new fields of application and can lead to faster progress in energy materials research, sensor technology, medicine, environmental technology, as well as food and analytical chemistry.

Partners:
- Helmholtz-Zentrum Berlin, Institute for Nanospectroscopy (HZB), Coordination Prof. Dr. Klaus Lips
- University of Stuttgart
- Karlsruhe Institute of Technology, Institute for Microstructure Technology (KIT)
- Max Planck Institute for Chemical Energy Conversion (MPICEC)
- Bruker Biospin GmbH

arö

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.