Steve Albrecht gewinnt den Karl-Scheel-Preis 2019

Die Physikalische Gesellschaft zu Berlin zeichnet Steve Albrecht mit dem Karl-Scheel-Preis aus.

Die Physikalische Gesellschaft zu Berlin zeichnet Steve Albrecht mit dem Karl-Scheel-Preis aus. © HZB

Mit dem diesjährigen Karl-Scheel-Preis würdigt die Physikalische Gesellschaft zu Berlin Steve Albrecht vom Helmholtz-Zentrum Berlin für Materialien und Energie für seine Arbeiten auf dem Gebiet von hocheffizienten Tandem-Solarzellen mit Absorbern aus Metall-Halogenid-Perowskiten.

Der Preis wird am Freitag, den 28. Juni 2019, im Magnus-Haus der Physikalischen Gesellschaft zu Berlin an Prof. Dr. Steve Albrecht übergeben. Albrecht hält dazu einen Vortrag über „Hocheffiziente Tandemsolarzellen mit Absorbern aus Metall-Halogenid-Perowskiten“. Zu dieser Veranstaltung lädt die Physikalische Gesellschaft zu Berlin noch herzlich ein.

Albrecht leitet seit August 2016 die Nachwuchsgruppe Perowskit-Tandem-Solarzellen am HZB und ist seit Dezember 2018 Juniorprofessor an der Fakultät Elektrotechnik und Informatik der Technischen Universität Berlin. Zusammen mit der École polytechnique Fédérale de Lausanne in der Schweiz gelang es ihm, die erste monolithische Perowskit/Silizium-Heteroübergang-Tandemsolarzelle mit einem Rekordwirkungsgrad von 18,1% zu realisieren.

Prof. Dr. Bernd Rech, Wissenschaftlicher Geschäftsführer des Helmholtz‐Zentrum Berlin für Materialien und Energie betont: „Steve Albrecht hat in den letzten vier Jahren als Wissenschaftler und Nachwuchsgruppenleiter am HZB herausragende Leistungen erbracht, umso mehr, als das Thema Perowskit-Solarzellen auch am Helmholtz-Zentrum Berlin Neuland war. Dabei hat er nicht nur als Wissenschaftler, sondern auch als Persönlichkeit begeistert.“

Der Karl-Scheel-Preis wird seit mehr als 50 Jahren für eine herausragende, in der Regel nach der Promotion entstandene wissenschaftliche Arbeit eines Mitgliedes der Gesellschaft vergeben. Dem Vermächtnis Karl Scheels folgend wird der Preisträgerin oder dem Preisträger anlässlich eines Festkolloquiums (Karl-Scheel-Sitzung) die Karl-Scheel-Medaille sowie ein Preisgeld in Höhe von 5.000 € überreicht.

Die Physikalische Gesellschaft zu Berlin lädt herzlich zur Preisverleihung ein:

Zeit: Freitag, den 28. Juni 2019, ab 17:15 Uhr

Ort: Hörsaal des Magnus-Hauses, Am Kupfergraben 7, 10117 Berlin
Zum "Karl-Scheel-Preis" der Physikalischen Gesellschaft zu Berlin

 

 

red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.