Utrafast magnetism: electron-phonon interactions examined at BESSY II

When illuminated by the synchrotron light, nickel emits x-rays itself due to the decay of valence electrons. The number of emitted photons reduces when increasing the temperature from room temperature (left) to 900°C (right).

When illuminated by the synchrotron light, nickel emits x-rays itself due to the decay of valence electrons. The number of emitted photons reduces when increasing the temperature from room temperature (left) to 900°C (right). © HZB

How fast can a magnet switch its orientation and what are the microscopic mechanisms at play ? These questions are of first importance for the development of data storage and computer chips. Now, an HZB team at BESSY II has for the first time been able to experimentally assess the principal microscopic process of ultra-fast magnetism. The methodology developed for this purpose can also be used to investigate interactions between spins and lattice oscillations in graphene, superconductors or other (quantum) materials.

Interactions between electrons and phonons are regarded as the microscopic driving force behind ultrafast magnetization or demagnetization processes (spin-flips). However, it was not possible until now to observe such ultrafast processes in detail due to the absence of suitable methods.

Original new method at BESSY II

Now, a team headed by Prof. Alexander Föhlisch has developed an original method to determine experimentally for the first time the electron-phonon driven spin-flip scattering rate in two model systems: ferromagnetic Nickel and nonmagnetic copper. 

They used X-ray emission spectroscopy (XES) at BESSY II to do this. X-rays excited core electrons in the samples (Ni or Cu) to create the so-called core-holes, which were then filled by the decay of valence electrons. This decay results in the emission of light, which can then be detected and analyzed. The samples were measured at different temperatures to observe the effects of lattice vibrations (phonons) increasing from room temperature to 900 degrees Celsius.

In NIckel: Emissions decrease when the sample is hot

As the temperature increased, ferromagnetic nickel showed a strong decrease in emissions. This observation fits well with the theoretical simulation of processes in the electronic band structure of nickel after excitations: by increasing the temperature and thus, the phonon population, the rate of scattering between electrons and phonons increases. Scattered electrons are no more available for decay, which results in a waning of the light emission. As expected, in the case of diamagnetic copper, the lattice vibrations had hardly any influence on the measured emissions.

"We believe that our article is of high interest not only to specialists in the fields of magnetism, electronic properties of solids and X-ray emission spectroscopy, but also to a broader readership curious about the latest developments in this dynamic field of research," says Dr. Régis Decker, first author and postdoctoral scientist in the Föhlisch team. The method can also be used for the analysis of ultrafast spin flip processes in novel quantum materials such as graphene, superconductors or topological insulators.

 

Scientific Reports, 2019: “Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy”. Régis Decker, Artur Born, Robby Büchner, Kari Ruotsalainen, Christian Strahlman, Stefan Neppl, Robert Haverkamp, Annette Pietzsch, and Alexander Föhlisch

DOI: 10.1038/s41598-019-45242-8

arö

  • Copy link

You might also be interested in

  • Porous Radical Organic framework improves lithium-sulphur batteries
    Science Highlight
    15.09.2025
    Porous Radical Organic framework improves lithium-sulphur batteries
    A team led by Prof. Yan Lu, HZB, and Prof. Arne Thomas, Technical University of Berlin, has developed a material that enhances the capacity and stability of lithium-sulphur batteries. The material is based on polymers that form a framework with open pores (known as radical-cationic covalent organic frameworks or COFs). Catalytically accelerated reactions take place in these pores, firmly trapping polysulphides, which would shorten the battery life. Some of the experimental analyses were conducted at the BAMline at BESSY II.
  • Metallic nanocatalysts: what really happens during catalysis
    Science Highlight
    10.09.2025
    Metallic nanocatalysts: what really happens during catalysis
    Using a combination of spectromicroscopy at BESSY II and microscopic analyses at DESY's NanoLab, a team has gained new insights into the chemical behaviour of nanocatalysts during catalysis. The nanoparticles consisted of a platinum core with a rhodium shell. This configuration allows a better understanding of structural changes in, for example, rhodium-platinum catalysts for emission control. The results show that under typical catalytic conditions, some of the rhodium in the shell can diffuse into the interior of the nanoparticles. However, most of it remains on the surface and oxidises. This process is strongly dependent on the surface orientation of the nanoparticle facets.
  • Shedding light on insulators: how light pulses unfreeze electrons
    Science Highlight
    08.09.2025
    Shedding light on insulators: how light pulses unfreeze electrons
    Metal oxides are abundant in nature and central to technologies such as photocatalysis and photovoltaics. Yet, many suffer from poor electrical conduction, caused by strong repulsion between electrons in neighboring metal atoms. Researchers at HZB and partner institutions have shown that light pulses can temporarily weaken these repulsive forces, lowering the energy required for electrons mobility, inducing a metal-like behavior. This discovery offers a new way to manipulate material properties with light, with high potential to more efficient light-based devices.