Tomographie-Weltrekord: Zuschauen, wie Metall aufgeschäumt wird

Der Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse.

Der Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse. © HZB

Mit einem am HZB entwickelten Rotationstisch hat ein internationales Forscher-Team an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Rekord erreicht: Mit 208 dreidimensionalen Röntgenaufnahmen (Tomographien) pro Sekunde konnten sie die dynamischen Prozesse beim Aufschäumen von flüssigem Aluminium dokumentieren. Im Fachjournal Nature Communications wird die Methode vorgestellt.

Der am HZB konstruierte Präzisions-Messtisch rotiert extrem präzise und mehrere hundert Male pro Sekunde um seine Achse. Das HZB-Team um Dr. Francisco García-Moreno kombinierte den Messtisch mit einer hochauflösenden Optik und erreichte damit in 2018 an der BESSY II-Beamline EDDI einen ersten Weltrekord mit gut 25 Tomographien pro Sekunde.

Nun hat das Team gemeinsam mit der Gruppe um Prof. Marco Stampanoni aus dem Paul-Scherrer-Institut, PSI, an der Synchrotron Lichtquelle Schweiz, SLS, einen neuen Weltrekord erzielt. Dafür bauten sie den Rotationstisch an der TOMCAT Strahllinie der SLS auf. Diese verfügt über eine Hochgeschwindigkeitskamera mit extrem hoher Datentransferrate, die eigens für solch schnelle Messungen entwickelt wurde. „Mehr als 200 Tomographien pro Sekunde sind nun möglich und das über Messzeiten von mehreren Minuten“, sagt Garcia-Moreno. Für diese neue bildgebende Methode wurde der Begriff Tomoskopie geprägt.

Tomoskopie: neues bildgebendes Verfahren

Dr. Christian Schlepütz vom PSI betont: „Bei jeder Tomoskopiemessung werden riesige Datenmengen erzeugt, die laufend mit einer sehr hohen Datenrate von acht Gigabyte pro Sekunde gespeichert werden müssen. Nur dadurch lassen sich die extrem schnellen Vorgänge im Material über längere Zeiträume beobachten“.

Im Anschluss an die Experimente müssen auf den Computerclustern am PSI tausende einzelner Tomographien aus den Messdaten errechnet werden, und die Bilder werden automatisch weiter verarbeitet, was quantitative Analysen ermöglicht. Um die mehrere Terabyte großen Datenmengen pro Experiment zu verarbeiten, hat Dr. Paul Kamm aus dem HZB einen eigenen Workflow programmiert.

Die Kooperationspartner nutzten die neue bildgebende Methode, um dynamische Prozesse beim Aufschäumen von flüssigem Aluminium im Detail und mit hoher Zeitauflösung zu beobachten. Denn auf diese Weise lassen sich Prozesse bei der Schaumbildung in metallischen Schmelzen untersuchen und verstehen. Dies ist wichtig, um im später ausgehärteten Schaum eine optimale Materialverteilung und gleichmäßige Porenbildung zu erreichen, so dass er in Leichtbauanwendungen einsetzbar ist.

Metallschäume für den Leichtbau

Metallische Schäume sind eine wichtige Materialklasse für den Leichtbau, und sie sind ein dankbares Untersuchungsobjekt für die nun entwickelte Tomoskopie, da flüssiges Metall weitgehend unempfindlich gegenüber Strahlenschäden ist und die erreichten Aufnahmegeschwindigkeiten sehr gut zu den Phänomenen beim Aufschäumen passen.

Die Computertomoskopie könnte auch interessante Einblicke in viele weitere Prozesse ermöglichen: zum Beispiel ließe sich damit untersuchen, wie sich Materialien beim Laserschweißen verändern oder was passiert, wenn sich Batterien etwa durch Kurzschluss überhitzen (thermal runaway).

Die Forscher an HZB und PSI arbeiten nun daran, die Geschwindigkeit weiter zu erhöhen, um die Zeitauflösung der Messungen weiter zu steigern.

Nature communications (2019): Using X-ray tomoscopy to explore the dynamics of foaming metal; Francisco García-Moreno, Paul Hans Kamm, Tillmann Robert Neu, Felix Bülk, Rajmund Mokso, Christian Matthias Schlepütz, Marco Stampanoni, John Banhart

HZB, TU Berlin, MAX IV, PSI, ETH Zürich

DOI: 10.1038/s41467-019-11521-1

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    Science Highlight
    23.07.2025
    Schriftrollen aus buddhistischem Schrein an BESSY II virtuell entrollt
    In der mongolischen Sammlung des Ethnologischen Museums der Staatlichen Museen zu Berlin befindet sich ein einzigartiger Gungervaa-Schrein. Der Schrein enthält auch drei kleine Röllchen aus eng gewickelten langen Streifen, die in Seide gewickelt und verklebt sind. Ein Team am HZB konnte die Schrift auf den Streifen teilweise sichtbar machen, ohne die Röllchen durch Aufwickeln zu beschädigen. Mit 3D-Röntgentomographie erstellten sie eine Datenkopie des Röllchens und verwendeten im Anschluss ein mathematisches Verfahren, um den Streifen virtuell zu entrollen. Das Verfahren wird auch in der Batterieforschung angewandt.
  • Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Science Highlight
    21.07.2025
    Langzeittest zeigt: Effizienz von Perowskit-Zellen schwankt mit der Jahreszeit
    Auf dem Dach eines Forschungsgebäudes am Campus Adlershof läuft ein einzigartiger Langzeitversuch: Die unterschiedlichsten Solarzellen sind dort über Jahre Wind und Wetter ausgesetzt und werden dabei vermessen. Darunter sind auch Perowskit-Solarzellen. Sie zeichnen sich durch hohe Effizienz zu geringen Herstellungskosten aus. Das Team um Dr. Carolin Ulbrich und Dr. Mark Khenkin hat Messdaten aus vier Jahren ausgewertet und in der Fachzeitschrift Advanced Energy Materials vorgestellt. Dies ist die bislang längste Messreihe zu Perowskit-Zellen im Außeneinsatz. Eine Erkenntnis: Standard-Perowskit-Solarzellen funktionieren während der Sommersaison auch über mehrere Jahre sehr gut, lassen jedoch in der dunkleren Jahreszeit etwas nach. Die Arbeit ist ein wichtiger Beitrag, um das Verhalten von Perowskit-Solarzellen unter realen Bedingungen zu verstehen.

  • Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Science Highlight
    18.07.2025
    Natrium-Ionen-Batterien: Neuer Speichermodus für Kathodenmaterialien
    Batterien funktionieren, indem Ionen zwischen zwei chemisch unterschiedlichen Elektroden gespeichert und ausgetauscht werden. Dieser Prozess wird Interkalation genannt. Bei der Ko-Interkalation werden dagegen sowohl Ionen als auch Lösungsmittelmoleküle in den Elektrodenmaterialien gespeichert, was bisher als ungünstig galt. Ein internationales Team unter der Leitung von Philipp Adelhelm hat nun jedoch gezeigt, dass die Ko-Interkalation in Natrium-Ionen-Batterien mit den geeigneten Kathodenmaterialien funktionieren kann. Dieser Ansatz bietet neue Entwicklungsmöglichkeiten für Batterien mit hoher Effizienz und schnellen Ladefähigkeiten. Die Ergebnisse wurden in Nature Materials veröffentlicht.