Nanoparticles in lithium-sulphur batteries detected with neutron experiment

The operando cell was developed at HZB and allows to analyse processes inside the battery during charging cycles with neutrons.

The operando cell was developed at HZB and allows to analyse processes inside the battery during charging cycles with neutrons. © S. Risse/HZB

An HZB team has for the first time precisely analysed how nanoparticles of lithium sulphide and sulphur precipitate onto battery electrodes during the course of the charging cycle. The results can help increase the service life of lithium-sulphur batteries.

Lithium-sulphur batteries are regarded as one of the most promising candidates for the next generation of energy storage devices. They have a theoretical gravimetric energy density that is five times higher than that of the best lithium-ion batteries currently available. And they even work at sub-zero temperatures of down to -50 °C. In addition, sulphur is inexpensive and environmentally friendly.

Capacity loss

However, their capacity so far has fallen sharply with every charge-discharge cycle, so that such batteries are not yet long-lasting. The loss of capacity is caused by complicated reaction processes at the electrodes inside the battery cell. It is therefore particularly important to understand exactly how the charge (sulphur) and discharge (lithium sulphide) products precipitate and dissolve. While sulphur precipitates macroscopically and therefore lends itself to examination by imaging techniques or X-ray diffraction during cycling, lithium sulphide is difficult to detect due to its sub-10-nm particle size.

"Operando" observations with neutrons

Insight into this has now been provided for the first time by investigations with the BER II neutron source at the HZB. Dr. Sebastian Risse used a measuring cell he developed to illuminate lithium-sulphur batteries with neutrons during charging and discharging cycles (operando) and simultaneously performed additional measurements with impedance spectroscopy.

This enabled him and his team to analyse the dissolution and precipitation of lithium sulphide with extreme precision during ten discharge/charging cycles. Since neutrons interact strongly with deuterium (heavy hydrogen), the researchers used a deuterated electrolyte in the battery cell to make both the solid products (sulphur and lithium sulphide) visible.

Surprising insight

Their conclusion: “We observed that the lithium sulphide and sulphur precipitation does not take place inside the microporous carbon electrodes, but instead on the outer surface of the carbon fibres”, says Risse. These results provide a valuable guide for the development of better battery electrodes.

The study is published in ACS Nano, (2019): Operando Analysis of a Lithium/Sulfur Battery by Small Angle Neutron Scattering. Sebastian Risse, Eneli Härk, Ben Kent and Matthias Ballauff

DOI: http://dx.doi.org/10.1021/acsnano.9b03453

arö

  • Copy link

You might also be interested in

  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).