HZB Researcher on the Board of Directors of the Materials Research Society

Catherine Dubourdieu is head of the IFOX Institute at HZB and was elected now into the board of directors of the MRS.

Catherine Dubourdieu is head of the IFOX Institute at HZB and was elected now into the board of directors of the MRS.

In September 2019, Prof. Dr. Catherine Dubourdieu was elected into the Board of Directors of the Materials Research Society (MRS). The MRS is one of the largest scientific associations and has almost 14000 members from various areas of the natural sciences and engineering.

Catherine Dubourdieu heads the HZB-Institute IFOX (Functional Oxides for Energy Efficient Information Technology) and holds a professorship at the Freie Universität Berlin. She investigates the growth and properties of functional oxides and semiconductor materials with the aim of developing energy-efficient devices for information technology, that can be integrated on silicon chips. Over the past 15 years, the physicist has also established numerous collaborations with industry and holds 10 patents. She has already published over 140 articles in peer-review journals and has an excellent international network.

In the Materials Research Society Catherine Dubourdieu has been active for over 20 years, also in responsible functions. As of 2020, Catherine Dubourdieu will be a member of the MRS Board of Directors to support the global materials research community and provide a framework for the various disciplines to collaborate.

The MRS's mission is to advance international interdisciplinary materials research and technology for the benefit of the human society. It was founded in 1973 and today has around 14000 members from various areas of the natural sciences and engineering. The governance of the Society is the responsibility of the Board of Directors, composed of 6 officers and 18 directors, 15 of whom are elected by the membership. One third of the Board is renewed each year. Catherine Dubourdieu will serve in this position over the next three years.

arö

  • Copy link

You might also be interested in

  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.