Helmholtz Association promotes HZB cooperation with Slovenia on perovskite silicon tandem solar cells

Marko Jošt was a PhD student in the HySPRINT-Lab in Steve Albrecht's group. Now he will continue his research on tandem solar cells at the university of Lubljana.

Marko Jošt was a PhD student in the HySPRINT-Lab in Steve Albrecht's group. Now he will continue his research on tandem solar cells at the university of Lubljana. © M. Setzpfandt/ HZB

A HZB team has successfully raised funds from the “Helmholtz European Partnering Program” of the Helmholtz Association to expand cooperation with partners of the University of Ljubljana, Slovenia. The topics of the cooperation are tandem solar cells made of perovskite and silicon and, in particular, their precise characterisation.

Currently, most solar modules consist of silicon, a semiconductor that mainly uses the red parts of the solar spectrum to generate electricity. The combination of silicon with perovskite semiconductors therefore promises great opportunities for even higher efficiencies. Semiconductor materials from this material class convert the energy-rich, blue parts of the spectrum into electricity.

Now the HZB physicist Prof. Dr. Steve Albrecht has raised funds from the Helmholtz Association to investigate such tandem solar cells with partners from the University of Ljubljana, Slovenia. The TAPAS project is funded by the Helmholtz European Partnering programme for the next three years with 250,000 euros per year each. Following an evaluation, the funding period can be extended by two years. The Helmholtz European Partnering programme was set up to strengthen the European research area, in particular cooperation with countries in Southern, Central and Eastern Europe.

The name TAPAS stands for "Tandem Perovskite and Silicon solar cells - Advanced opto-electrical characterization, modeling and stability".  Together with opto-electrical modelling, highly efficient and stable next-generation tandem solar cells are to be developed for the energy system of the future.

The Working Group for Photovoltaics and Optoelectronics at the University of Ljubljana (LPVO, headed by Prof. Dr Marko Topič) and the Helmholtz-Zentrum Berlin have established a very successful cooperation in recent years, which will be further strengthened by this funding. The aim of the cooperation is to analyse the processes that affect the stability of the modules in the field. 

arö

  • Copy link

You might also be interested in

  • What Zinc concentration in teeth reveals
    Science Highlight
    19.02.2026
    What Zinc concentration in teeth reveals
    Teeth are composites of mineral and protein, with a bulk of bony dentin that is highly porous. This structure is allows teeth to be both strong and sensitive. Besides calcium and phosphate, teeth contain trace elements such as zinc. Using complementary microscopy imaging techniques, a team from Charité Berlin, TU Berlin and HZB has quantified the distribution of natural zinc along and across teeth in 3 dimensions. The team found that, as porosity in dentine increases towards the pulp, zinc concentration increases 5~10 fold. These results help to understand the influence of widely-used zinc-containing biomaterials (e.g. filling) and could inspire improvements in dental medicine.
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • A record year for our living lab for building-integrated PV
    News
    27.01.2026
    A record year for our living lab for building-integrated PV
    In 2025, our solar facade in Berlin-Adlershof generated more electricity than in any of the previous four years of operation.