Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered

The study is displayed on the cover of the journal Chemmedchem.

The study is displayed on the cover of the journal Chemmedchem. © Chemmedchem/VCH Wiley

In tumor cells, the DNA is altered in comparison to normal body cells. How such changes can be prevented or inhibited is an exciting field of research with great relevance for the development of cancer treatments. An interdisciplinary team has now analysed the possible binding mechanisms in certain therapeutic substances from the tetrazole hydrazide group using protein crystallography at BESSY II.

Certain proteins such as human histone demethylases, including the KDM4 protein, play a role in the development of tumour cells. They bind to the DNA and modify it so that the cell can become cancerous. Therapeutic substances that are able to inhibit or even reverse such changes are of particular interest.

Biochemist Prof. Dr. Udo Heinemann from the Max Delbrück Centre in Berlin-Buch is investigating such processes. In cooperation with chemists led by Prof. Dr. Andreas Link from the University of Greifswald and the team led by Dr. Manfred Weiss at the HZB, he has now investigated how and where certain therapeutic substances from the tetrazole hydrazide group dock to these protein molecules and thus inhibit their harmful effect.

KDM4 protein crystals analysed

Link initially produced variations of tetrazole hydrazide substances. For structural analysis, crystals had to be grown from KDM4 proteins - a difficult task that Dr. Piotr Malecki and Manfred Weiss had taken on at the HZB. The KDM4 protein crystals were then soaked in a specific substance before being analyzed with strong X-rays on the MX beamlines of BESSY II. A refined analysis showed not only the three-dimensional architecture of the KDM4 protein, but also exactly where the active substances had docked to the KDM4 molecule.

"This class of substances has not yet been structurally investigated," explains Manfred Weiss.  And Udo Heinemann from the MDC explains: "We will now evaluate where there are opportunities to dock even stronger within the 3D structure of the KDM4. Then we might also be able to develop drugs that inhibit the KDM4 even more and thus have the potential to become a therapeutic."

arö

  • Copy link

You might also be interested in

  • The twisted nanotubes that tell a story
    News
    09.12.2025
    The twisted nanotubes that tell a story
    In collaboration with scientists in Germany, EPFL researchers have demonstrated that the spiral geometry of tiny, twisted magnetic tubes can be leveraged to transmit data based on quasiparticles called magnons, rather than electrons.
  • Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    News
    05.12.2025
    Ernst Eckhard Koch Prize and Innovation Award on Synchrotron Radiation 2025
    At the 27th BESSY@HZB User Meeting, the Friends of HZB honoured the dissertation of Dr Enggar Pramanto Wibowo (Friedrich-Alexander University Erlangen-Nuremberg). The Innovation Award on Synchrotron Radiation 2025 went to Prof. Tim Salditt (Georg-August-University Göttingen) and Professors Danny D. Jonigk and Maximilian Ackermann (both, University Hospital of RWTH Aachen University). 
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.