Batterieforschung: Mit Neutronen und Röntgenlicht die Alterung von Lithium-Batterien analysiert

Das Synchrotron-Röntgen-Tomogramm zeigt starke Risse (schwarz) im Bereich der elektrischen Kontaktierung (weiß).

Das Synchrotron-Röntgen-Tomogramm zeigt starke Risse (schwarz) im Bereich der elektrischen Kontaktierung (weiß). © T.Arlt, I. Manke/HZB, R. Ziesche/UCL

Neutronen zeigen Bereiche, die aufgrund von Elektrolytmangel „ausgetrocknet“ sind (gelber Pfeil) sowie Bereiche mit stark verringerter Lithiummenge (blauer Pfeil).

Neutronen zeigen Bereiche, die aufgrund von Elektrolytmangel „ausgetrocknet“ sind (gelber Pfeil) sowie Bereiche mit stark verringerter Lithiummenge (blauer Pfeil). © T.Arlt, I. Manke/HZB, R. Ziesche/UCL

3D-Einblick in eine virtuell am Computer aufgeschnittene Batterie.

3D-Einblick in eine virtuell am Computer aufgeschnittene Batterie. © T.Arlt, I. Manke/HZB, R. Ziesche/UCL

Ein internationales Team hat mit Neutronen- und Röntgen-Tomographie die dynamischen Prozesse untersucht, die an den Elektroden in Lithium-Batterien stattfinden und zu Leistungsabbau führen. Mit einem neuen mathematischen Verfahren gelang es, die zu einer kompakten Rolle aufgewickelten Elektroden „virtuell zu entrollen“ und so tatsächlich zu beobachten, was an den Elektroden geschieht. Die Studie wurde in Nature Communications veröffentlicht.

Lithium-Batterien sind überall eingebaut: Sie versorgen Smartphones, Laptops, Elektroräder und Elektroautos mit elektrischer Energie, die sie auf kleinstem Raum speichern. Diese kompakte Gestalt wird in der Regel erreicht, indem Dünnschichten, die im Innern der Batterien als Elektroden fungieren, eng umeinander gewickelt werden. Denn Elektroden müssen große Flächen besitzen, um hohe Kapazitäten und rasche Ladeprozesse zu ermöglichen.

Röntgen- und Neutronen-Tomographie

Ein internationales Forscherteam um das Helmholtz-Zentrum Berlin und das University College London hat nun die Prozesse beim Speichern und Entladen an den Elektroden-Oberflächen erstmals mit einer Kombination aus zwei komplementären Tomographie-Verfahren untersucht. Mit Röntgen-Tomographie an der European Synchrotron Radiation Facility (ESRF) in Grenoble konnten sie die Mikrostruktur der Elektroden analysieren und nachweisen, welche Verformungen und Risse während der Ladezyklen entstehen. „Die Neutronen-Tomographie ermöglichte dagegen, die Wanderung der Lithium-Ionen direkt zu beobachten und auch festzustellen, wie sich die Verteilung des Elektrolyten in der Batteriezelle mit der Zeit verändert“, erklärt Dr. Ingo Manke, Tomographie-Experte am HZB.

Messungen in Berlin und Grenoble

Die Neutronen-Tomographiedaten wurden überwiegend an der Neutronenquelle BER II am HZB gewonnen, wo mit dem Instrument CONRAD eines der weltweit besten Instrumente zur Verfügung stand. Weitere Daten konnten an der Neutronenquelle des Institut-Laue Langevin (ILL, Grenoble) gewonnen werden, wo mit Hilfe des Expertenteams des HZBs aktuell eine erste Neutronen-Imaging-Messstation aufgebaut wurde. Nach dem Abschalten des BER II im Dezember 2019 wird das CONRAD-Instrument am ILL aufgebaut, sodass es auch künftig für die Forschung zur Verfügung steht.

Mathematik sorgt für Durchblick

Mit einem neuen mathematischen Verfahren, das am Zuse-Institut in Berlin entwickelt wurde, konnten die Physiker die Batterie-Elektroden „virtuell entrollen“ – denn die gerollten Schichten der Batterie sind nur schwer quantitativ zu untersuchen. Erst durch die mathematische Analyse und das Entrollen lassen sich daraus Rückschlüsse auf Prozesse an einzelnen Schichten ziehen.

Was beim Papyrus klappt, hilft auch bei Batterien

„Wir haben diesen Algorithmus hier erstmals auf einer typischen kommerziell erhältlichen Lithium-Batterie angewendet und in mehreren Rückkopplungsschritten gemeinsam mit den Informatikern des Zuse-Instituts weiter optimiert“, sagt Dr. Tobias Arlt vom HZB. „Der Algorithmus war ursprünglich mal zum virtuellen Entrollen von Papyrus-Rollen gedacht“, erläutert Manke. „Aber er lässt sich eben auch einsetzen, um herauszufinden, was genau in kompakten Batterien abläuft.“

Probleme identifiziert

Mit diesem Verfahren konnten typische Probleme bei gerollten Batterien untersucht werden: Beispielsweise zeigten die inneren Windungen eine ganz andere elektrochemische Aktivität (und damit Lithium-Kapazität) als die äußeren Windungen. Zudem verhielten sich auch die oberen und unteren Bereiche der Batterie jeweils sehr verschieden. Die Neutronen-Daten zeigten auch Bereiche, in denen es zu einem Elektrolyt-Mangel kam, was die Funktionsfähigkeit des jeweiligen Abschnitts stark einschränkte. Auch konnte gezeigt werden, dass die Anode nicht überall gleich gut mit Lithium be- und entladen wird.

„Wir haben mit dem entwickelten Verfahren ein einzigartiges Werkzeug, um in eine laufende Batterie hineinzuschauen und zu analysieren, wo und warum es zu Leistungsverlusten kommt. Daraus lassen sich spezifische Hinweise ableiten, um das Design von gerollten Batterien zu verbessern“, so Manke.


Nature communications (2019): 4D imaging of Li-batteries using operando neutron and X-ray computed tomography in combination with a virtual unrolling technique

Ralf F. Ziesche, Tobias Arlt, Donal P. Finegan, Thomas M. M. Heenan, Alessandro Tengattini, Daniel Baum, Nikolay Kardjilov, Henning Markoetter, Ingo Manke, Winfried Kockelmann, Dan J. L. Brett, Paul R. Shearing

DOI: 10.1038/s41467-019-13943-3

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.