Plants absorb lead from perovskite solar cells more than expected

Mint plants have been analysed after having grown on contaminated soil samples.

Mint plants have been analysed after having grown on contaminated soil samples. © Fujian Agriculture and Forestry University

Lead from metal-organic perovskite compounds can be absorbed particularly easily by plants. The bioavailability is significantly higher than that of lead from inorganic compounds as found in batteries. This is shown in a study by HZB researcher Antonio Abate with partners in China and Italy, published in Nature communications.

Certain perovskite compounds are seen as a great hope for better and, above all, even cheaper solar cells. Their crystal lattice is formed by organic methylammonium cations (MA+) surrounded by heavy metal atoms (lead or tin) and atoms like iodine. The best perovskite solar cells today are realized with lead. In just ten years of research, the efficiency of these solar cells in the laboratory has been increased from 4 percent (2009) to over 25 percent (2019). However, lead is toxic and must not enter the food chain. On the other hand, very little lead is needed for a solar module: a square metre perovskite solar module contains only 0.8 grams of lead, which is very little compared to other technical sources of lead (e.g. in batteries).

Now a team led by Prof. Antonio Abate at the Helmholtz-Zentrum Berlin has designed a study to investigate this risk. They cooperated with plant scientists from the Fujian Agriculture and Forestry University, China, where the experiments were carried out, and with a group from the university of Naples, Italy.

The plant experts prepared contaminated soil samples with different concentrations of lead from either perovskite solar cells or other lead sources and cultivated different plants. After a growth period they analyzed the lead content in leafs and other parts of the plant. They found that lead from perovskite solar cells is ten time more bioavailable than lead from other industrial sources.

And what’s more, the uptake ability of lead increases with the concentration of perovskite in the soil“, says Dr. Qiong Wang from Abate's team. This could be related to the fact that the organic cations in the perovskite change the PH content of the soil and thus promote the absorption of lead by the plants, she suggests. “These results show that we cannot consider perovskite as just another lead contaminant”, Abate concludes. 

Abate, who has obtained an European Research Grant, is working on the development of lead-free perovskite solar cells containing tin. Tin is also highly toxic, although it reacts very quickly to non-water-soluble forms. A series of experiments with mint plants on tin-contaminated soil showed that the plants absorb only a small amount of it. Lead-free perovskite solar cells, however, still fall short of the high efficiencies of lead-containing solar cells and also have even greater problems with stability.

The Helmholtz-Zentrum Berlin has huge expertise in the field of perovskite solar cells with or without lead. "We have to investigate this class of materials very broadly" Abate says: „Of course it is important to increase efficiencies and long time stability but we need as well to make sure that these materials do not pose a risk for the environment.“

Published in Nature communications (2020): The biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold concentration. Junming Li, Hai-Lei Cao, Wen-Bin Jiao, Qiong Wang, Mingdeng Wei, Irene Cantone, Jian Lü and Antonio Abate.

DOI: 10.1038/s41467-019-13910-y


You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.