Plants absorb lead from perovskite solar cells more than expected

Mint plants have been analysed after having grown on contaminated soil samples.

Mint plants have been analysed after having grown on contaminated soil samples. © Fujian Agriculture and Forestry University

Lead from metal-organic perovskite compounds can be absorbed particularly easily by plants. The bioavailability is significantly higher than that of lead from inorganic compounds as found in batteries. This is shown in a study by HZB researcher Antonio Abate with partners in China and Italy, published in Nature communications.

Certain perovskite compounds are seen as a great hope for better and, above all, even cheaper solar cells. Their crystal lattice is formed by organic methylammonium cations (MA+) surrounded by heavy metal atoms (lead or tin) and atoms like iodine. The best perovskite solar cells today are realized with lead. In just ten years of research, the efficiency of these solar cells in the laboratory has been increased from 4 percent (2009) to over 25 percent (2019). However, lead is toxic and must not enter the food chain. On the other hand, very little lead is needed for a solar module: a square metre perovskite solar module contains only 0.8 grams of lead, which is very little compared to other technical sources of lead (e.g. in batteries).

Now a team led by Prof. Antonio Abate at the Helmholtz-Zentrum Berlin has designed a study to investigate this risk. They cooperated with plant scientists from the Fujian Agriculture and Forestry University, China, where the experiments were carried out, and with a group from the university of Naples, Italy.

The plant experts prepared contaminated soil samples with different concentrations of lead from either perovskite solar cells or other lead sources and cultivated different plants. After a growth period they analyzed the lead content in leafs and other parts of the plant. They found that lead from perovskite solar cells is ten time more bioavailable than lead from other industrial sources.

And what’s more, the uptake ability of lead increases with the concentration of perovskite in the soil“, says Dr. Qiong Wang from Abate's team. This could be related to the fact that the organic cations in the perovskite change the PH content of the soil and thus promote the absorption of lead by the plants, she suggests. “These results show that we cannot consider perovskite as just another lead contaminant”, Abate concludes. 

Abate, who has obtained an European Research Grant, is working on the development of lead-free perovskite solar cells containing tin. Tin is also highly toxic, although it reacts very quickly to non-water-soluble forms. A series of experiments with mint plants on tin-contaminated soil showed that the plants absorb only a small amount of it. Lead-free perovskite solar cells, however, still fall short of the high efficiencies of lead-containing solar cells and also have even greater problems with stability.

The Helmholtz-Zentrum Berlin has huge expertise in the field of perovskite solar cells with or without lead. "We have to investigate this class of materials very broadly" Abate says: „Of course it is important to increase efficiencies and long time stability but we need as well to make sure that these materials do not pose a risk for the environment.“

Published in Nature communications (2020): The biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold concentration. Junming Li, Hai-Lei Cao, Wen-Bin Jiao, Qiong Wang, Mingdeng Wei, Irene Cantone, Jian Lü and Antonio Abate.

DOI: 10.1038/s41467-019-13910-y

arö


You might also be interested in

  • Unconventional piezoelectricity in ferroelectric hafnia
    Science Highlight
    26.02.2024
    Unconventional piezoelectricity in ferroelectric hafnia
    Hafnium oxide thin films are a fascinating class of materials with robust ferroelectric properties in the nanometre range. While the ferroelectric behaviour is extensively studied, results on piezoelectric effects have so far remained mysterious. A new study now shows that the piezoelectricity in ferroelectric Hf0.5Zr0.5O2 thin films can be dynamically changed by electric field cycling. Another ground-breaking result is a possible occurrence of an intrinsic non-piezoelectric ferroelectric compound. These unconventional features in hafnia offer new options for use in microelectronics and information technology.
  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Helmholtz Zentrum Berlin is a bicycle-friendly employer
    News
    21.02.2024
    Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Since 2017, the German Cyclists' Federation (ADFC) has been awarding the EU-wide "Bicycle-Friendly Employer" certification. The Helmholtz-Zentrum Berlin has now been awarded the coveted silver seal. With this, the HZB wants to be even more attractive as an employer, especially for international applicants.