Plants absorb lead from perovskite solar cells more than expected

Mint plants have been analysed after having grown on contaminated soil samples.

Mint plants have been analysed after having grown on contaminated soil samples. © Fujian Agriculture and Forestry University

Lead from metal-organic perovskite compounds can be absorbed particularly easily by plants. The bioavailability is significantly higher than that of lead from inorganic compounds as found in batteries. This is shown in a study by HZB researcher Antonio Abate with partners in China and Italy, published in Nature communications.

Certain perovskite compounds are seen as a great hope for better and, above all, even cheaper solar cells. Their crystal lattice is formed by organic methylammonium cations (MA+) surrounded by heavy metal atoms (lead or tin) and atoms like iodine. The best perovskite solar cells today are realized with lead. In just ten years of research, the efficiency of these solar cells in the laboratory has been increased from 4 percent (2009) to over 25 percent (2019). However, lead is toxic and must not enter the food chain. On the other hand, very little lead is needed for a solar module: a square metre perovskite solar module contains only 0.8 grams of lead, which is very little compared to other technical sources of lead (e.g. in batteries).

Now a team led by Prof. Antonio Abate at the Helmholtz-Zentrum Berlin has designed a study to investigate this risk. They cooperated with plant scientists from the Fujian Agriculture and Forestry University, China, where the experiments were carried out, and with a group from the university of Naples, Italy.

The plant experts prepared contaminated soil samples with different concentrations of lead from either perovskite solar cells or other lead sources and cultivated different plants. After a growth period they analyzed the lead content in leafs and other parts of the plant. They found that lead from perovskite solar cells is ten time more bioavailable than lead from other industrial sources.

And what’s more, the uptake ability of lead increases with the concentration of perovskite in the soil“, says Dr. Qiong Wang from Abate's team. This could be related to the fact that the organic cations in the perovskite change the PH content of the soil and thus promote the absorption of lead by the plants, she suggests. “These results show that we cannot consider perovskite as just another lead contaminant”, Abate concludes. 

Abate, who has obtained an European Research Grant, is working on the development of lead-free perovskite solar cells containing tin. Tin is also highly toxic, although it reacts very quickly to non-water-soluble forms. A series of experiments with mint plants on tin-contaminated soil showed that the plants absorb only a small amount of it. Lead-free perovskite solar cells, however, still fall short of the high efficiencies of lead-containing solar cells and also have even greater problems with stability.

The Helmholtz-Zentrum Berlin has huge expertise in the field of perovskite solar cells with or without lead. "We have to investigate this class of materials very broadly" Abate says: „Of course it is important to increase efficiencies and long time stability but we need as well to make sure that these materials do not pose a risk for the environment.“

Published in Nature communications (2020): The biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold concentration. Junming Li, Hai-Lei Cao, Wen-Bin Jiao, Qiong Wang, Mingdeng Wei, Irene Cantone, Jian Lü and Antonio Abate.

DOI: 10.1038/s41467-019-13910-y

arö

  • Copy link

You might also be interested in

  • 20 years of promoting science in the school lab
    News
    29.11.2024
    20 years of promoting science in the school lab
    38,000 visitors in 20 years: high demand shows need for science education

    Twenty years ago, on 29 November 2004, Klaus Böger, then Senator for Education in Berlin, opened one of the capital's first school laboratories. Since then, Helmholtz-Zentrum Berlin (HZB), in cooperation with the Berlin Senate, has successfully promoted science education through project days and further training in the school lab.

  • Protons against cancer: New research beamline for innovative radiotherapies
    News
    27.11.2024
    Protons against cancer: New research beamline for innovative radiotherapies
    Together with the University of the Bundeswehr Munich, the HZB has set up a new beamline for preclinical research. It will enable experiments on biological samples on innovative radiation therapies with protons.
  • Battery research with the HZB X-ray microscope
    Science Highlight
    18.11.2024
    Battery research with the HZB X-ray microscope
    New cathode materials are being developed to further increase the capacity of lithium batteries. Multilayer lithium-rich transition metal oxides (LRTMOs) offer particularly high energy density. However, their capacity decreases with each charging cycle due to structural and chemical changes. Using X-ray methods at BESSY II, teams from several Chinese research institutions have now investigated these changes for the first time with highest precision: at the unique X-ray microscope, they were able to observe morphological and structural developments on the nanometre scale and also clarify chemical changes.