Pflanzen nehmen Blei aus Perowskit-Solarzellen stärker auf als erwartet

Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschließend wurde der Bleigehalt in ihren Blättern analysiert.

Auf Bodenproben mit unterschiedlicher Blei-Belastung wuchsen Pfefferminzpflanzen. Anschließend wurde der Bleigehalt in ihren Blättern analysiert. © Fujian Agriculture and Forestry University

Blei aus metall-organischen Perowskitverbindungen wird deutlich stärker von Pflanzen aufgenommen als beispielsweise Blei aus anorganischen Quellen. Dies zeigt eine Studie von HZB-Forscher Antonio Abate mit Partnern aus China und Italien, die in Nature communications veröffentlicht ist.

Bestimmte Perowskitverbindungen gelten als große Hoffnung für noch bessere und vor allem noch günstigere Solarzellen. Ihr Kristallgitter wird von organischen Methylammonium-Kationen gebildet, die von Schwermetall-Atomen und Atomen wie Jod umgeben sind. Die besten Perowskitsolarzellen werden heute mit Blei realisiert. In nur zehn Jahren Forschungsarbeit ließ sich der Wirkungsgrad dieser Solarzellen im Labor von 4 Prozent (2009) auf inzwischen über 25 Prozent (2019) steigern. Blei ist allerdings hochgiftig und darf nicht in die Nahrungskette gelangen. Ein quadratmetergroßes Perowskit-Solarmodul enthält jedoch nur 0,8 Gramm Blei, also sehr wenig im Vergleich zu anderen technischen Quellen von Blei (z.B. in Batterien).

Nun hat ein Team um Prof. Dr. Antonio Abate am Helmholtz-Zentrum Berlin eine Studie konzipiert, um dieses Risiko zu untersuchen. Dafür arbeiteten sie mit einem Team der Landwirtschaftlichen Universität in Fujian, China, sowie mit einer Gruppe an der Universität in Neapel, Italien, zusammen.

Die Pflanzenexperten in Fujian bereiteten Bodenproben mit unterschiedlicher Bleibelastung vor und bauten darauf Minzpflanzen sowie zwei andere Blattpflanzen an. Bei einem Teil der Proben war die Bleibelastung durch anorganische Quellen verursacht, bei einem anderen Teil durch Blei aus Perowskit-Verbindungen. Nach einer Wachstumsperiode analysierten sie den Bleigehalt in den Blättern und anderen Pflanzenteilen.

Die Analysen zeigten, dass Blei aus Perowskit-Solarzellen etwa zehnmal besser aufgenommen wird als aus anorganischen Kontaminations-Quellen. Dies könnte damit zusammenhängen, dass die organischen Kationen (Methyammonium+) im Perowskit den PH-Gehalt des Bodens verändern und damit die Bleiaufnahme durch die Pflanzen begünstigen, vermutet Dr. Qiong Wang aus dem Team von Abate. „Diese Ergebnisse weisen darauf hin, dass man Perowskite nicht einfach wie andere Quellen für Bleibelastungen betrachten sollte“, sagt Abate.

Abate forscht an der Entwicklung von bleifreien Perowskit-Solarzellen, die Zinn enthalten. Auch Zinn ist hochgiftig, allerdings reagiert es sehr rasch zu nicht-wasserlöslichen Formen. Eine weitere Versuchsreihe mit Minzpflanzen auf Zinn-belasteten Böden ergab, dass die Pflanzen es deutlich weniger aufnehmen. Bleifreie Perowskit-Solarzellen erreichen allerdings noch bei weitem nicht die hohen Wirkungsgrade von bleihaltigen Solarzellen und haben darüber hinaus auch noch größere Probleme mit der Stabilität.

Das Helmholtz-Zentrum Berlin hat auf dem Gebiet der Perowskit-Solarzellen große Expertise aufgebaut und forscht sowohl an bleihaltigen Verbindungen als auch an bleifreien Alternativen. „Wir müssen diese Materialklasse sehr breit untersuchen“, meint Abate und betont: „Natürlich ist es wichtig, Wirkungsgrade und Langzeitstabilität zu erhöhen, aber wir müssen auch die Umweltverträglichkeit im Blick behalten.“

Nature communications (2020): The biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold concentration. Junming Li, Hai-Lei Cao, Wen-Bin Jiao, Qiong Wang, Mingdeng Wei, Irene Cantone, Jian Lü and Antonio Abate.

DOI: 10.1038/s41467-019-13910-y

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Science Highlight
    08.01.2025
    Lithium-Schwefel-Batterien im Taschenformat an BESSY II durchleuchtet
    Neue Einblicke in Lithium-Schwefel-Pouchzellen hat ein Team aus HZB und dem Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS) in Dresden an der BAMline von BESSY II gewonnen. Ergänzt durch Analysen im Imaging Labor des HZB sowie weiteren Messungen ergibt sich ein neues und aufschlussreiches Bild von Prozessen, die Leistung und Lebensdauer dieses industrierelevanten Batterietyps begrenzen. Die Studie ist im renommierten Fachjournal "Advanced Energy Materials" publiziert.

  • Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    Science Highlight
    21.12.2024
    Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
    An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser eignet sich ein Molekül als molekularer Nanomagnet. Solche Nanomagnete besitzen eine Vielzahl von potenziellen Anwendungen, z. B. als energieeffiziente Datenspeicher. An der Studie waren Forschende aus dem Max-Planck-Institut für Kohlenforschung (MPI KOFO), dem Joint Lab EPR4Energy des Max-Planck-Instituts für Chemische Energiekonversion (MPI CEC) und dem Helmholtz-Zentrums Berlin beteiligt.
  • Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Science Highlight
    10.12.2024
    Katalysatoraktivierung und -abbau in hydrierten Iridiumoxiden
    Die Entwicklung effizienter Katalysatoren für die Sauerstoffentwicklung (OER) ist entscheidend für den Fortschritt der Protonenaustauschmembran (PEM)-Wasserelektrolyse, wobei Iridium-basierte OER-Katalysatoren trotz der Herausforderungen im Zusammenhang mit ihrer Auflösung vielversprechend sind. Eine gemeinsame Forschung des Helmholtz-Zentrums Berlin und des Fritz-Haber-Instituts hat Einblicke in die Mechanismen der OER-Leistung und der Iridiumauflösung für amorphe hydrierte Iridiumoxide geliefert und das Verständnis dieses kritischen Prozesses vorangetrieben. Messungen an BESSY II haben dazu wesentliche Erkenntnisse geliefert.