Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch Röntgenanalysen zeigen sich Veränderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts).

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch Röntgenanalysen zeigen sich Veränderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts). © Martin Künsting/HZB

Eine neue Materialklasse kann elektrische Energie sehr schnell speichern. Es handelt sich um zweidimensionale Titankarbide, so genannte MXene. Wie eine Batterie speichern sie durch elektrochemische Reaktionen große Mengen elektrischer Energie - aber im Gegensatz zu Batterien können sie in Sekundenschnelle geladen und entladen werden. In Zusammenarbeit mit der Drexel-Universität hat ein Team am HZB gezeigt, dass die Einlagerung von Harnstoffmolekülen zwischen den MXene-Schichten die Kapazität solcher "Pseudokondensatoren" um mehr als 50 Prozent erhöhen kann. An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind.

Um elektrische Energie zu speichern, gibt es unterschiedliche Lösungen: Elektrochemische Batterien auf Lithium-Basis speichern große Energiemengen, benötigen aber lange Ladezeiten. Superkondensatoren hingegen können elektrische Energie extrem schnell aufnehmen oder abgeben - speichern aber wesentlich weniger elektrische Energie.

Pseudokondensatoren aus MXene

Eine weitere Option ist seit 2011 in Sicht: An der Drexel University, USA, wurde eine neue Klasse von 2D-Materialien entdeckt, die enorme Ladungsmengen speichern können. Es handelt sich um so genannte MXene, Nanoblätter aus Ti3C2Tx -Molekülen, die ähnlich wie Graphen ein zweidimensionales Netzwerk bilden. Während Titan (Ti) und Kohlenstoff (C) Elemente sind, bezeichnet Tx verschiedene chemische Gruppen, die die Oberfläche versiegeln, zum Beispiel OH-Gruppen. MXene sind hochleitfähige Materialien mit hydrophiler Oberfläche. In Wasser bilden sie Dispersionen, die an schwarze Tinte erinnern.

Ti3C2Tx kann so viel Energie speichern wie eine Batterie, kann aber innerhalb von Zehntelsekunden geladen oder entladen werden. Während ähnlich schnelle (oder schnellere) Superkondensatoren ihre Energie durch elektrostatische Adsorption von elektrischen Ladungen absorbieren, wird die Energie in MXenen in chemischen Bindungen an ihren Oberflächen gespeichert. Diese Art der Energiespeicherung ist viel effizienter.

Weiches Röntgenlicht zeigt, was passiert

In Zusammenarbeit mit der Gruppe um Yuri Gogotsi an der Drexel-Universität haben die HZB-Wissenschaftler Dr. Tristan Petit und Ameer Al-Temimy nun erstmals weiche Röntgenabsorptionsspektroskopie an BESSY II genutzt, um MXene-Proben an den Experimentierstationen LiXEdrom und X-PEEM zu untersuchen. Sie konnten die chemische Umgebung von MXene-Oberflächengruppen im Vakuum, aber auch direkt in Wasserumgebung analysieren. Sie untersuchten Proben aus reinen MXenen und aus MXenen mit eingelagerten Harnstoffmolekülen und fanden dramatische Unterschiede.

Harnstoff erhöht die Kapazität

Das Vorhandensein von Harnstoffmolekülen verändert die elektrochemischen Eigenschaften von MXenen signifikant. Die Flächenkapazität erhöhte sich auf 1100 mF/cm2, was 56 Prozent höher ist als bei ähnlich präparierten reinen Ti3C2Tx -Elektroden.

Die XAS-Analysen bei BESSY II zeigten, dass sich die Oberflächenchemie durch die Anwesenheit der Harnstoffmoleküle verändert. "Am X-PEEM konnten wir auch den Oxidationszustand der Ti-Atome auf den Ti3C2Tx -Oberflächen beobachten. Dieser Oxidationszustand erhöhte sich durch die Anwesenheit von Harnstoff, was die Speicherung von mehr Energie erleichtern könnte", sagt Ameer Al-Temimy, der die Messungen im Rahmen seiner Doktorarbeit durchführte.

 

J. Phys. Chem. C (2020): Enhancement of Ti3C2 MXene Pseudocapacitance After Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy, Ameer Al-Temimy, Babak Anasori, Katherine A. Mazzio, Florian Kronast, Mykola Seredych, Narendra Kurra, Mohamad-Assaad Mawass, Simone Raoux, Yury Gogotsi, and Tristan Petit  

DOI: 10.1021/acs.jpcc.9b11766

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.