Schnell und stark: Neue 2D-Materialien mit Talent zur Energiespeicherung

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch Röntgenanalysen zeigen sich Veränderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts).

MXene sind 2D-Materialien, die Flocken aus vielen Schichten bilden (links) und sich als Pseudokondensatoren eignen. Durch Röntgenanalysen zeigen sich Veränderungen in der chemischen Struktur im Vergleich von reinen MXene (mitte) und MXene mit zwischengelagertem Harnstoff (rechts). © Martin Künsting/HZB

Eine neue Materialklasse kann elektrische Energie sehr schnell speichern. Es handelt sich um zweidimensionale Titankarbide, so genannte MXene. Wie eine Batterie speichern sie durch elektrochemische Reaktionen große Mengen elektrischer Energie - aber im Gegensatz zu Batterien können sie in Sekundenschnelle geladen und entladen werden. In Zusammenarbeit mit der Drexel-Universität hat ein Team am HZB gezeigt, dass die Einlagerung von Harnstoffmolekülen zwischen den MXene-Schichten die Kapazität solcher "Pseudokondensatoren" um mehr als 50 Prozent erhöhen kann. An BESSY II haben sie analysiert, welche Veränderungen der MXene-Oberflächenchemie nach der Harnstoffeinlagerung dafür verantwortlich sind.

Um elektrische Energie zu speichern, gibt es unterschiedliche Lösungen: Elektrochemische Batterien auf Lithium-Basis speichern große Energiemengen, benötigen aber lange Ladezeiten. Superkondensatoren hingegen können elektrische Energie extrem schnell aufnehmen oder abgeben - speichern aber wesentlich weniger elektrische Energie.

Pseudokondensatoren aus MXene

Eine weitere Option ist seit 2011 in Sicht: An der Drexel University, USA, wurde eine neue Klasse von 2D-Materialien entdeckt, die enorme Ladungsmengen speichern können. Es handelt sich um so genannte MXene, Nanoblätter aus Ti3C2Tx -Molekülen, die ähnlich wie Graphen ein zweidimensionales Netzwerk bilden. Während Titan (Ti) und Kohlenstoff (C) Elemente sind, bezeichnet Tx verschiedene chemische Gruppen, die die Oberfläche versiegeln, zum Beispiel OH-Gruppen. MXene sind hochleitfähige Materialien mit hydrophiler Oberfläche. In Wasser bilden sie Dispersionen, die an schwarze Tinte erinnern.

Ti3C2Tx kann so viel Energie speichern wie eine Batterie, kann aber innerhalb von Zehntelsekunden geladen oder entladen werden. Während ähnlich schnelle (oder schnellere) Superkondensatoren ihre Energie durch elektrostatische Adsorption von elektrischen Ladungen absorbieren, wird die Energie in MXenen in chemischen Bindungen an ihren Oberflächen gespeichert. Diese Art der Energiespeicherung ist viel effizienter.

Weiches Röntgenlicht zeigt, was passiert

In Zusammenarbeit mit der Gruppe um Yuri Gogotsi an der Drexel-Universität haben die HZB-Wissenschaftler Dr. Tristan Petit und Ameer Al-Temimy nun erstmals weiche Röntgenabsorptionsspektroskopie an BESSY II genutzt, um MXene-Proben an den Experimentierstationen LiXEdrom und X-PEEM zu untersuchen. Sie konnten die chemische Umgebung von MXene-Oberflächengruppen im Vakuum, aber auch direkt in Wasserumgebung analysieren. Sie untersuchten Proben aus reinen MXenen und aus MXenen mit eingelagerten Harnstoffmolekülen und fanden dramatische Unterschiede.

Harnstoff erhöht die Kapazität

Das Vorhandensein von Harnstoffmolekülen verändert die elektrochemischen Eigenschaften von MXenen signifikant. Die Flächenkapazität erhöhte sich auf 1100 mF/cm2, was 56 Prozent höher ist als bei ähnlich präparierten reinen Ti3C2Tx -Elektroden.

Die XAS-Analysen bei BESSY II zeigten, dass sich die Oberflächenchemie durch die Anwesenheit der Harnstoffmoleküle verändert. "Am X-PEEM konnten wir auch den Oxidationszustand der Ti-Atome auf den Ti3C2Tx -Oberflächen beobachten. Dieser Oxidationszustand erhöhte sich durch die Anwesenheit von Harnstoff, was die Speicherung von mehr Energie erleichtern könnte", sagt Ameer Al-Temimy, der die Messungen im Rahmen seiner Doktorarbeit durchführte.

 

J. Phys. Chem. C (2020): Enhancement of Ti3C2 MXene Pseudocapacitance After Urea Intercalation Studied by Soft X-ray Absorption Spectroscopy, Ameer Al-Temimy, Babak Anasori, Katherine A. Mazzio, Florian Kronast, Mykola Seredych, Narendra Kurra, Mohamad-Assaad Mawass, Simone Raoux, Yury Gogotsi, and Tristan Petit  

DOI: 10.1021/acs.jpcc.9b11766

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.