Tandemsolarzellen-Weltrekorde: Neuer Zweig im NREL-Chart

Die CIGS-Pero-Tandemzelle wurde in einer typischen Laborgröße von einem Quadratzentimeter realisiert.

Die CIGS-Pero-Tandemzelle wurde in einer typischen Laborgröße von einem Quadratzentimeter realisiert. © HZB

Die Pero-CIGS-Tandemzellen werden nun mit einem rot umrandeten Quadrat im NREL-Chart aufgeführt. Den Weltrekord hält aktuell das HZB mit 24,16 %.

Die Pero-CIGS-Tandemzellen werden nun mit einem rot umrandeten Quadrat im NREL-Chart aufgeführt. Den Weltrekord hält aktuell das HZB mit 24,16 %. © NREL

Eigens für eine Entwicklung aus dem HZB gibt es nun in der Grafik für Solarzellen-Weltrekorde einen neuen Zweig. Die neue Weltrekord-Zelle besteht aus den Halbleitern Perowskit und CIGS, die zu einer monolithischen „zwei-Terminal“-Tandemzelle verschaltet sind. Aufgrund der verwendeten Dünnschichttechnologien überleben solche Tandemzellen im Weltall deutlich länger und können sogar auf biegsamen Folien produziert werden. Die neue Tandemzelle erreicht einen zertifizierten Wirkungsgrad von 24,16 Prozent.

Tandemzellen bestehen in der Regel aus zwei unterschiedlichen Halbleitern, die unterschiedliche Bereiche des Lichtspektrums in elektrische Energie umwandeln. Dabei nutzen Metall-Halogenid Perowskit-Verbindungen vor allem die sichtbaren Anteile des Spektrums, während CIGS-Halbleiter mehr die infraroten Anteile umwandeln. CIGS steht für eine Verbindung aus Kupfer, Indium, Gallium und Selen. CIGS-Zellen können als Dünnschichtstapel von insgesamt nur 3 bis 4 Mikrometern Dicke abgeschieden werden, die Perowskitschichten sind mit 0,5 Mikrometern sogar noch viel dünner. Die neue Tandemsolarzelle aus CIGS und Perowskit besitzt damit eine Dicke von deutlich unter 5 Mikrometern, so dass biegsame Solarmodule denkbar sind.

Für Anwendungen im Weltraum geeignet

„Diese Kombination ist zudem extrem leicht und stabil gegen Bestrahlung, so dass sie für Anwendungen in der Satellitentechnik im Weltraum eignen könnte“, sagt Prof. Dr. Steve Albrecht, HZB. Ergebnisse dazu sind nun auch in der renommierten Fachzeitschrift JOULE publiziert.

Extrem dünn und effizient

„Wir haben die Unterzelle aus CIGS diesmal direkt mit der Oberzelle aus Perowskit verschaltet, so dass die Tandemzelle nur zwei elektrische Kontakte, sogenannte „Terminals“ besitzt, erklärt Dr. Christian Kaufmann vom PVcomB am HZB, der mit seinem Team die CIGS-Unterzelle entwickelt hat: „Speziell die Einbringung von Rubidium hat das CIGS Absorbermaterial deutlich verbessert“. Albrecht und sein Team haben die Perowskit-Schicht im HySPRINT-Lab am HZB direkt auf der rauen CIGS-Schicht abgeschieden.

Ein "Trick" bewährt sich

„Dabei haben wir einen Trick benutzt, den wir zuvor entwickelt haben“, erklärt der ehemalige Postdoc aus Albrechts Gruppe Dr. Marko Jošt, der nun an der Universität in Ljubjana, Slowenien, forscht. Sie brachten zunächst so genannte SAM-Moleküle auf die CIGS-Schicht, die sich selbstorganisiert dicht zu einer monomolekularen Lage anordnen.

Offiziell zertifiziert: 24,16 Prozent

Die neue Perowskit-CIGS-Tandemzelle erreicht einen Wirkungsgrad von 24,16 Prozent. Dieser Wert ist offiziell durch das CalLab des Fraunhofer-Instituts für Solare Energiesysteme (ISE) zertifiziert.

Eigener Zweig in den NREL-Charts

Da solche „2Terminal“-Tandemzellen aus CIGS und Perowskit nun eine eigene Kategorie darstellen, hat das National Renewable Energy Lab NREL, USA, dafür einen neuen Zweig auf der berühmten NREL Chart angelegt. Diese Grafik verzeichnet die Entwicklung der Wirkungsgrade für nahezu alle Solarzell-Typen seit 1976. Perowskit-Verbindungen sind erst seit 2013 mit eingezeichnet – Der Wirkungsgrad dieser Materialklasse ist seitdem so stark gestiegen wie für kein anderes Material.

Prof. Dr. Steve Albrecht leitet am HZB eine vom BMBF geförderte Nachwuchsgruppe und ist Juniorprofessor an der Technischen Universität Berlin. Dr. Christian Kaufmann leitet eine Arbeitsgruppe am PVcomB des HZB.  Aus dem HZB sind in den letzten Jahren bereits mehrfach Weltrekorde für Tandemsolarzellen aus Perowskit in Kombination mit anorganischen Halbleitern gemeldet worden. Aktuell hält das Team um Albrecht auch den Weltrekord für Tandemzellen aus Silizium und Perowskit mit 29, 1 Prozent, der ebenfalls in den NREL-Charts verzeichnet ist.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.
  • Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Interview
    21.08.2025
    Schlüsseltechnologie für eine Zukunft ohne fossile Energieträger
    Im Juni und Juli 2025 verbrachte der Katalyseforscher Nico Fischer Zeit am HZB. Es war sein „Sabbatical“, für einige Monate war er von seinen Pflichten als Direktor des Katalyse-Instituts in Cape Town entbunden und konnte sich nur der Forschung widmen. Mit dem HZB arbeitet sein Institut an zwei Projekten, die mit Hilfe von neuartigen Katalysatortechnologien umweltfreundliche Alternativen erschließen sollen. Mit ihm sprach Antonia Rötger.