Tandem solar cell world record: New branch in the NREL chart

The CIGS-Pero tandem cell was realised in a typical lab size of 1 square centimeter.

The CIGS-Pero tandem cell was realised in a typical lab size of 1 square centimeter. © HZB

The Pero CIGS tandem cells are now shown in the NREL chart (red square dots). The world record is currently held by the HZB with 24.16 %.

The Pero CIGS tandem cells are now shown in the NREL chart (red square dots). The world record is currently held by the HZB with 24.16 %. © NREL

A special branch in the famous NREL-chart for solar cell world records refers to a newly developed tandem solar cell by HZB teams. The world-record cell combines the semiconductors perovskite and CIGS to a monolithic "two-terminal" tandem cell. Due to the thin-film technologies used, such tandem cells survive much longer in space and can even be produced on flexible films. The new tandem cell achieves a certified efficiency of 24.16 percent.

Tandem cells combine two different semiconductors that convert different parts of the light spectrum into electrical energy. Metal-halide perovskite compounds mainly use the visible parts of the spectrum, while CIGS semiconductors convert rather the infrared light. CIGS cells, which consist of copper, indium, gallium and selenium, can be deposited as thin-films with a total thickness of only 3 to 4 micrometers; the perovskite layers are even much thinner at 0.5 micrometers. The new tandem solar cell made of CIGS and perovskite thus has a thickness of well below 5 micrometers, which would allow the production of flexible solar modules.

Suitable for applications in space

"This combination is also extremely light weight and stable against irradiation, and could be suitable for applications in satellite technology in space", says Prof. Dr. Steve Albrecht, HZB. These results, obtained in a big collaboration, have been just published in the renowned journal JOULE.

Extremely thin and efficient

"This time, we have connected the bottom cell (CIGS) directly with the top cell (perovskite), so that the tandem cell has only two electrical contacts, so-called terminals", explains Dr. Christian Kaufmann from PVcomB at HZB, who developed the CIGS bottom cell with his team and he adds "Especially the introduction of rubidium has significantly improved the CIGS absorber material".

Improving the contact

Albrecht and his team have deposited in the HySPRINT lab at HZB the perovskite layer directly on the rough CIGS layer. "We used a trick that we had previously developed," explains former postdoc from Albrecht's group Dr. Marko Jošt, who is now a scientist at the University of Ljubjana, Slovenia. They applied so-called SAM molecules to the CIGS layer, which form a self-organised monomolecular layer, improving the contact between perovskite and CIGS.

Certified efficiency: 24.16 percent

The new perovskite CIGS tandem cell achieves an efficiency of 24.16 percent. This value has been officially certified by the CalLab of the Fraunhofer Institute for Solar Energy Systems (ISE).

NREL-Chart

Since such "2 Terminal" tandem cells made of CIGS and perovskite now represent a separate category, the National Renewable Energy Lab NREL, USA, has created a new branch on the famous NREL chart for this purpose. This chart shows the development of efficiencies for almost all solar cell types since 1976. Perovskite compounds have only been included since 2013 - the efficiency of this material class has increased more steeply than any other material.

Prof. Dr. Steve Albrecht heads a BMBF-funded junior research group at HZB and is a junior professor at the Technical University of Berlin. Dr. Christian Kaufmann heads a research group at HZB's PVcomB.  Recently, several world records for tandem solar cells made of perovskite in combination with inorganic semiconductors have been reported from HZB.Currently, Albrecht's team also holds the world record for tandem cells made of silicon and perovskite with 29.1 percent, which is also listed in the NREL charts.

arö


You might also be interested in

  • 14 parameters in one go: New instrument for optoelectronics
    Science Highlight
    21.02.2024
    14 parameters in one go: New instrument for optoelectronics
    An HZB physicist has developed a new method for the comprehensive characterisation of semiconductors in a single measurement. The "Constant Light-Induced Magneto-Transport (CLIMAT)" is based on the Hall effect and allows to record 14 different parameters of transport properties of negative and positive charge carriers. The method was tested now on twelve different semiconductor materials and will save valuable time in assessing new materials for optoelectronic applications such as solar cells.
  • Helmholtz Zentrum Berlin is a bicycle-friendly employer
    News
    21.02.2024
    Helmholtz Zentrum Berlin is a bicycle-friendly employer
    Since 2017, the German Cyclists' Federation (ADFC) has been awarding the EU-wide "Bicycle-Friendly Employer" certification. The Helmholtz-Zentrum Berlin has now been awarded the coveted silver seal. With this, the HZB wants to be even more attractive as an employer, especially for international applicants.

  • Sodium-ion batteries: How doping works
    Science Highlight
    20.02.2024
    Sodium-ion batteries: How doping works
    Sodium-ion batteries still have a number of weaknesses that could be remedied by optimising the battery materials. One possibility is to dope the cathode material with foreign elements. A team from HZB and Humboldt-Universität zu Berlin has now investigated the effects of doping with Scandium and Magnesium. The scientists collected data at the X-ray sources BESSY II, PETRA III, and SOLARIS to get a complete picture and uncovered two competing mechanisms that determine the stability of the cathodes.