Neue Wechselwirkung zwischen Licht und Materie an BESSY II entdeckt

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben.

Ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern schreibt zahlreiche Magnetwirbel, die zusammen en Begriff „MPI-IS“ ergeben. © Alejandro Posada, Felix Groß/MPI-IS

Ein deutsch-chinesisches Team um Gisela Schütz vom MPI für Intelligente Systeme hat an BESSY II eine neue Wechselwirkung zwischen Licht und Materie entdeckt. Es gelang ihnen damit, nanometerfeine magnetische Wirbel in einer magnetischen Schicht zu erzeugen. Dabei handelt es sich um so genannte Skyrmionen, die für künftige Informationstechnologien interessant sind.

Skyrmionen sind 100 Nanometer kleine dreidimensionale Strukturen, die in magnetischen Materialien vorkommen. Sie ähneln kleinen Spulen: atomare Elementarmagnete – sogenannte Spins –, die sich in geschlossenen Wirbelstrukturen anordnen. Skyrmionen sind topologisch geschützt, d. h. in ihrer Form unveränderbar und gelten daher als energieeffiziente Datenspeicher.

Weiches Röntgenlicht an BESSY II

In einer Reihe von Experimenten an der MAXYMUS-Beamline von BESSY II zeigten die Forschenden nun, dass ein gebündelter weicher Röntgenstrahl mit einem Durchmesser von weniger als 50 Nanometern einen Magnetwirbel von 100 Nanometern hervorbringen kann. Um die Skyrmionen sichtbar zu machen, nutzen die Forschenden das Rastertransmissions-Röntgenmikroskop MAXYMUS. Dabei handelt es sich um ein hochauflösendes Röntgenmikroskop, 1,8 Tonnen schwer, das an BESSY II angesiedelt ist.

Entdeckung durch glücklichen Zufall

Diese Entdeckung verdankt sich einem Zufall, denn bisher war diese Art der Interaktion zwischen Licht und Materie völlig unbekannt. „Wir wissen nicht, wie Licht Materie schreibt“, sagt Dr. Joachim Gräfe, Leiter der Forschungsgruppe Nanomagnonik und Magnetisierungsdynamik am MPI-IS. Er ist einer der Hauptautoren der Studie, die im Februar in Nature communications veröffentlicht wurde. „Wir können bestimmte Eigenschaften phänomenologisch beschreiben. Wir wissen, dass es mit dem Röntgenstrahl zu tun hat. Es ist nicht nur ein Energieeintrag wie Wärme, der das Skyrmion schreibt. Es ist wirklich ein resonanter Effekt: wir können die Atome, die für den Magnetismus verantwortlich sind, direkt anregen.“ So konnten er und sein Team „MPI-IS“ schreiben (siehe Abbildung).

Ausblick: Spintronische Datenträger

Die Ergebnisse sind insbesondere für die Entwicklung und Herstellung sogenannter spintronischer Datenträger relevant, die Informationen in Skyrmionen speichern. Sie gelten als energieeffizient und wenig störanfällig. Doch nur, wenn Skyrmione präzise und passgenau kreiert werden können – und das ist nun erstmals möglich geworden – kann diese Entwicklung ihren Lauf nehmen. „Unser Ziel ist es, dass Röntgenstrahlen in Zukunft als Werkzeug dienen, um die Anordnung magnetischer Strukturen zu bestimmen bzw. zu schreiben.“

red/MPI-IS

  • Link kopieren

Das könnte Sie auch interessieren

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.