Nutzerforschung an BESSY II: Neue Materialien steigern die Effizienz in Ethanol-Brennstoffzellen

Das Material besteht aus Nafion mit eingebetten Nanopartikeln.

Das Material besteht aus Nafion mit eingebetten Nanopartikeln. © B.Matos/IPEN

Eine Gruppe aus Brasilien hat mit einem HZB-Team eine neuartige Kompositmembran für Ethanol-Brennstoffzellen untersucht. Sie besteht aus dem Polymer Nafion, in das durch Schmelzextrusion Titanat-Nanopartikel eingebettet sind. An BESSY II konnten sie beobachten, wie die Nanopartikel in der Nafion-Matrix verteilt sind und wie sie die Protonenleitfähigkeit steigern.

Ethanol besitzt eine fünfmal höhere volumetrische Energiedichte als Wasserstoff und lässt sich gefahrlos in geeigneten Brennstoffzellen zur Stromerzeugung nutzen. Insbesondere in Brasilien besteht großes Interesse an Brennstoffzellen für Ethanol, das dort kostengünstig aus Zuckerrohr hergestellt werden kann. Theoretisch könnte der Wirkungsgrad einer Ethanol-Brennstoffzelle 96 Prozent betragen, aber in der Praxis liegt er selbst bei der höchsten Leistungsdichte nur bei 30 Prozent. Es gibt also noch viel Raum für Verbesserungen.

Nafion mit Nanopartikeln

Ein Team um Dr. Bruno Matos vom brasilianischen Forschungsinstitut IPEN erforscht deshalb neuartige Kompositmembranen für Direktethanol-Brennstoffzellen. Diese Kompositmembranen sollen die Polymerelektrolyten wie Nafion ersetzen. Matos und sein Team stellten nun mit einem Schmelzextrusionsverfahren Kompositmembranen auf der Basis von Nafion her. Dabei wurden in die Nafion-Matrix Titanat-Nanopartikel eingebettet, welche mit Sulfonsäuregruppen funktionalisiert wurden.

Protonenleitfähigkeit steigt

Matos und sein Team haben nun vier verschiedene Varianten dieser neuartigen Materialien an der Infrarot-Beamline IRIS bei BESSY II analysiert. Mit Infrarotspektroskopie beobachteten sie, dass sich chemische Brücken zwischen den Sulfonsäuregruppen der funktionalisierten Nanopartikel bildeten. Darüber hinaus stellten sie fest, dass die Protonenleitfähigkeit in der Kompositmembran erhöht war, selbst bei hohen Konzentrationen von Nanopartikeln.

Große Überraschung

"Das war eine echte Überraschung, die wir nicht erwartet hatten", sagt Dr. Ljiljana Puskar, HZB-Wissenschaftlerin an der IRIS-Beamline. Denn bisher war eine der Haupthürden bei der Entwicklung von Hochleistungsverbundwerkstoffen die Tatsache, dass sich mit steigender Konzentration der Nanopartikel die Protonenleitfähigkeit verringert. Die höhere Protonenleitfähigkeit könnte eine bessere Ladungsträgermobilität ermöglichen und damit die Effizienz der Direktethanol-Brennstoffzelle erhöhen.

"Diese Kompositmembran kann durch Schmelzextrusion hergestellt werden, was ihre Herstellung im industriellen Massstab ermöglichen würde", betont Matos.

arö


Das könnte Sie auch interessieren

  • 14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Science Highlight
    21.02.2024
    14 Parameter auf einen Streich: Neues Instrument für die Optoelektronik
    Ein HZB-Physiker hat eine neue Methode entwickelt, um Halbleiter durch einen einzigen Messprozess umfassend zu charakterisieren. Der „Constant Light-Induced Magneto-Transport (CLIMAT)“ basiert auf dem Hall-Effekt und ermöglicht es, 14 verschiedene Parameter von negativen wie positiven Ladungsträgern zu erfassen. An zwölf unterschiedlichen Halbleitermaterialien demonstrierte nun ein großes Team die Tauglichkeit dieser neuen Methode, die sehr viel Arbeit spart. 
  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.