Future information technologies: 3D Quantum Spin Liquid revealed

Two of the four magnetic interactions form a new three-dimensional network of corner-sharing triangles, known as the hyper-hyperkagome lattice, leading to the quantum spin liquid behavior in PbCuTe<sub>2</sub>O<sub>6</sub>.

Two of the four magnetic interactions form a new three-dimensional network of corner-sharing triangles, known as the hyper-hyperkagome lattice, leading to the quantum spin liquid behavior in PbCuTe2O6. © HZB

Quantum Spin Liquids are candidates for potential use in future information technologies. So far, Quantum Spin Liquids have usually only been found in one or two dimensional magnetic systems only. Now an international team led by HZB scientists has investigated crystals of PbCuTe2O6 with neutron experiments at ISIS, NIST and ILL. They found spin liquid behaviour in 3D, due to a so called hyper hyperkagome lattice. The experimental data fit extremely well to theoretical simulations also done at HZB.

IT devices today are based on electronic processes in semiconductors. The next real breakthrough could be to exploit other quantum phenomena, for example interactions between tiny magnetic moments in the material, the so-called spins.  So-called quantum-spin liquid materials could be candidates for such new technologies. They differ significantly from conventional magnetic materials because quantum fluctuations dominate the magnetic interactions: Due to geometric constraints in the crystal lattice, spins cannot all "freeze" together in a ground state - they are forced to fluctuate, even at temperatures close to absolute zero.

Quantum spin liquids: a rare phenomenon

Quantum spin liquids are rare and have so far been found mainly in two-dimensional magnetic systems. Three-dimensional isotropic spin liquids are mostly sought in materials where the magnetic ions form pyrochlore or hyperkagome lattices. An international team led by HZB physicist Prof. Bella Lake has now investigated samples of PbCuTe2O6, which has a three-dimensional lattice called hyper-hyperkagome lattice. 

Magnetic interactions simulated

HZB physicist Prof. Johannes Reuther calculated the behaviour of such a three-dimensional hyper-hyperkagome lattice with four magnetic interactions and showed that the system exhibits quantum-spin liquid behaviour with a specific magnetic energy spectrum.

Experiments at neutron sources find 3D quantum spin liquid

With neutron experiments at ISIS, UK, ILL, France and NIST, USA the team was able to prove the very subtle signals of this predicted behaviour.  "We were surprised how well our data fit into the calculations. This gives us hope that we can really understand what happens in these systems," explains first author Dr. Shravani Chillal, HZB.

arö

You might also be interested in

  • Deputy Prime Minister of Singapore visits HZB
    News
    21.06.2022
    Deputy Prime Minister of Singapore visits HZB
    On Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Berlin, Laurence Bay, as well as representatives from research and industry.
  • Calculating the "fingerprints" of molecules with artificial intelligence
    Science Highlight
    13.06.2022
    Calculating the "fingerprints" of molecules with artificial intelligence
    With conventional methods, it is extremely time-consuming to calculate the spectral fingerprint of larger molecules. But this is a prerequisite for correctly interpreting experimentally obtained data. Now, a team at HZB has achieved very good results in significantly less time using self-learning graphical neural networks.
  • Water distribution in the fuel cell made visible in 4D
    Science Highlight
    02.06.2022
    Water distribution in the fuel cell made visible in 4D
    Teams from Helmholtz-Zentrum Berlin (HZB) and University College London (UCL) have visualised the water distribution in a fuel cell in three dimensions and in real time for the first time by evaluating neutron data from the Berlin Experimental Reactor shut down in 2019. The analysis opens new possibilities for more efficient and thus more cost-effective fuel cells.