Nutzerforschung an BESSY II: Bildung eines 2D metastabilen Oxids in reaktiven Umgebungen

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten Cu<sub>x</sub>O<sub>y</sub>-Struktur.

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten CuxOy-Struktur. © (2020) ACS Publishing

In vielen Anwendungen der Katalyse, bei chemischen Sensoren, Brennstoffzellen und Elektroden spielt das chemische Verhalten von Festkörperoberflächen eine wichtige Rolle. Ein Forscherteam des Max-Planck-Instituts für chemische Energiekonversion hat an der Synchrotronstrahlungsquelle BESSY II nun ein wichtiges Phänomen beschrieben, das auftreten kann, wenn Metalllegierungen reaktiven Umgebungen ausgesetzt werden.  

Befinden sich Metalllegierungen in reaktiven Umgebungen, so können sich 2D metastabile Oxide auf ihren Oberflächen bilden. Solche Oxide weisen chemische und elektronische Eigenschaften auf, die sich von denen ihrer Volumen-Pendants deutlich unterscheiden können. Aufgrund ihrer Metastabilität ist ihre Existenz auch mittels theoretischer Methoden oft schwer vorhersehbar.

In der Publikation stellen die Forscher die Ergebnisse einer ausführlichen Untersuchung eines solchen Oxids vor. Die Untersuchungen wurden mittels der In-situ-Photonelektronenspektroskopie an der ISISS Beamline und der UE49-PGM Beamline an BESSY II durchgeführt. Damit bestätigen die Forscher die Existenz von 2D metastabilen Oxiden, die zuvor mit theoretischen Berechnungen vorausgesagt wurde. Die Forschungsergebnisse tragen zum besseren Verständnis der Komplexität von festen Oberflächen in reaktiven Umgebungen bei. Sie sind kürzlich in der Fachzeitschrift ACS Materials & Interfaces veröffentlicht worden.

Die interdisziplinäre Forschungsarbeit geht aus einer Kollaboration zwischen dem Max-Planck-Institut für Chemische Energiekonversion, dem Max-Planck-Institut für Eisenforschung, dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, dem Helmholtz Zentrum Berlin und dem Italian Reaseach Council Insitute of Materials (CNR-IOM) hervor.

(sz/Max-Planck-Institut für chemische Energiekonversion)


Das könnte Sie auch interessieren

  • Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Science Highlight
    20.02.2024
    Natrium-Ionen-Akkus: wie Doping die Kathoden verbessert
    Natrium-Ionen-Akkus haben noch eine Reihe von Schwachstellen, die durch die Optimierung von Batteriematerialien behoben werden könnten. Eine Option ist die Dotierung des Kathodenmaterials mit Fremdelementen. Ein Team von HZB und Humboldt-Universität zu Berlin hat nun die Auswirkung von einer Dotierung mit Scandium und Magnesium untersucht. Um ein vollständiges Bild zu erhalten, hatten die Forscher*innen Messdaten an den Röntgenquellen BESSY II, PETRA III und SOLARIS gesammelt und ausgewertet. Sie entdeckten dadurch zwei konkurrierende Mechanismen, die über die Stabilität der Kathoden entscheiden.
  • BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Science Highlight
    07.02.2024
    BESSY II: Was Molekül-Orbitale über die Stabilität aussagen
    Fumarat, Maleat und Succinat sind organische Moleküle, die in der Koordinationschemie und teilweise auch in der Biochemie der Körperzellen eine Rolle spielen. Ein HZB-Team hat diese Moleküle nun an BESSY II mit Hilfe von RIXS und DFT-Simulationen analysiert. Die Ergebnisse geben nicht nur Aufschluss über die elektronischen Strukturen, sondern auch über die relative Stabilität dieser Moleküle. Dies könnte auch der Industrie dabei helfen, die Stabilität von Koordinationspolymeren zu optimieren.
  • BESSY II: Lokale Variationen in der Struktur von hochentropischen-Legierungen
    Science Highlight
    30.01.2024
    BESSY II: Lokale Variationen in der Struktur von hochentropischen-Legierungen
    Hochentropie-Legierungen halten extremer Hitze und Belastung stand und eignen sich daher für eine Vielzahl spezifischer Anwendungen. Einblicke in Ordnungsprozesse und Diffusionsphänomene in diesen Materialien hat nun eine neue Studie an der Röntgenquelle BESSY II geliefert. An der Studie waren Teams des HZB, der Bundesanstalt für Materialforschung und -prüfung, der Universität Lettland und der Universität Münster beteiligt.