User research at BESSY II: Formation of a 2D meta-stable oxide in reactive environments

Illustration of a Cu<sub>x</sub>O<sub>y</sub> structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials &amp; Interfaces.

Illustration of a CuxOy structure formed on a AgCu alloy in oxidizing environments described in this work. (c) ACS Applied Materials & Interfaces. © (2020) ACS Publishing

The chemical behaviour of solid material surfaces is an important physical characteristic for applications of catalysis, chemical sensors, fuel cells and electrodes. A research team from the Max Planck Institute for Chemical Energy Conversion has now described an important phenomenon that can occur when metal alloys are exposed to reactive environments at the synchrotron source BESSY II.

In a recent work published in ACS Applied Materials & Interfaces, a researchers’ team led by Dr. Mark Greiner (Surface Structure Analysis, Department of Heterogeneous Reactions) demonstrates an important phenomenon that can occur when metal alloys face reactive environments. They can form meta-stable 2D oxides on their surfaces. Such oxides exhibit chemical and electronic properties that are different from their bulk counterparts. Due to their meta-stability, their existence is also difficult to predict.

This publication displays the results of a thorough investigation of one such oxide, confirming previous theoretical predictions of its existence, and helps to advance the understanding of the complexity of solid surfaces in reactive environments. The investigations were performed using in-situ photon electron spectroscopy at the ISISS beamline and the UE49-PGM beamline at BESSY II.

This investigation was a collaborative research effort between the Max Planck Institute for Chemical Energy Conversion, the Max-Planck-Institut für Eisenforschung, the Fritz Haber Institute of the Max Planck Society, the Helmholtz Zentrum Berlin and the Italian National Research Council Institute of Materials (CNR-IOM).

(sz/Max-Planck-Institut für chemische Energiekonversion)

  • Copy link

You might also be interested in

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.