Perowskit-LED aus dem Drucker – auf dem Weg zu einem neuen Standard für die Elektronik

Grafische Darstellung des Druckprozesses für die Perowskit-LED.

Grafische Darstellung des Druckprozesses für die Perowskit-LED. © Claudia Rothkirch/HU Berlin

Ein Blick in das Helmholtz Innovation Lab HySPRINT. Wesentliche Arbeiten zu den druckbaren Perovskit-LEDs fanden hier statt.

Ein Blick in das Helmholtz Innovation Lab HySPRINT. Wesentliche Arbeiten zu den druckbaren Perovskit-LEDs fanden hier statt. © HZB/Phil Dera

Perovskit-Solarzellen einfach erklärt: wie sie funktionieren und was sie so effizient macht © HZB

02:15

Einem Team von Forschern des HZB und der Humboldt-Universität zu Berlin ist es zum ersten Mal gelungen, Leuchtdioden (LEDs) aus einem hybriden Perowskit-Halbleitermaterial per Tintenstrahldruck herzustellen. Das Tor zu einer breiten Anwendung solcher Materialien in vielerlei elektronischen Bauelementen ist damit geöffnet. Der Durchbruch gelang den Wissenschaftlern mithilfe eines Tricks: dem „Impfen“ der Oberfläche mit bestimmen Kristallen.

Die Mikroelektronik ist geprägt durch verschiedene funktionelle Materialien, deren Eigenschaften sie für bestimmte Anwendungen auszeichnen. So werden Transistoren und Datenspeicher aus Silizium gefertigt, und auch die meisten photovoltaischen Zellen für die Stromgewinnung aus Sonnenlicht bestehen aus diesem Halbleitermaterial. Um Licht in optoelektronischen Elementen wie Leuchtdioden (LEDs) zu erzeugen, kommen hingegen Verbindungshalbleiter wie Galliumnitrid zum Einsatz. Je nach Materialklasse unterscheiden sich zudem die Herstellungsverfahren.

Raus aus dem Zoo aus Materialien und Methoden

Eine Vereinfachung versprechen hybride Perowskit-Materialien – halbleitende Kristalle, deren organische und anorganische Bestandteile in einer bestimmten Kristallstruktur angeordnet sind. „Je nach Zusammensetzung lassen sich daraus alle Arten von mikroelektronischen Bauelementen fertigen“, sagt Prof. Dr. Emil List-Kratochvil, Leiter einer gemeinsamen Forschergruppe von HZB und Humboldt-Universität.

Hinzu kommt: Perowskit-Kristalle ermöglichen eine vergleichsweise simple Art der Verarbeitung. „Sie lassen sich aus einer flüssigen Lösung herstellen, damit kann man das gewünschte Bauteil Schicht für Schicht direkt aus dem Substrat heraus aufbauen“, erklärt der Physiker.

Nach Solarzellen nun auch Leuchtdioden aus dem Drucker

Dass sich Solarzellen aus einer Lösung solcher Halbleiterverbindungen heraus drucken lassen, haben die Wissenschaftler am HZB in den letzten Jahren bereits gezeigt – und sind heute bei dieser Technologie weltweit führend. Nun gelang es dem gemeinsamen Team von HZB und HU Berlin erstmals, auch funktionsfähige Leuchtdioden auf diese Weise herzustellen. Dazu verwendete die Forschergruppe einen Metall-Halogenid-Perowskit: ein Material, das eine besonders hohe Effizienz bei der Lichterzeugung verspricht – das aber andererseits schwierig zu verarbeiten ist.

„Bislang war es nicht möglich, solche Halbleiterschichten aus einer flüssigen Lösung mit ausreichender Qualität zu erzeugen“, sagt List-Kratochvil. So ließen sich LEDs nur aus organischen Halbleitern drucken, die aber nur eine bescheidene Leuchtkraft liefern. „Die Herausforderung war es, die salzartige Vorstufe, die wir mit dem Drucker auf das Substrat aufbrachten, mit einer Art Lockmittel dazu zu bewegen, rasch und gleichmäßig zu kristallisieren“, erklärt der Wissenschaftler. Das Team wählte dafür einen „Impfkristall“: ein beigefügtes Salz, das sich auf dem Substrat anheftet und wie ein Gerüst für das Wachstum der Perowskit-Struktur dient.

Deutlich bessere optische und elektronische Merkmale

So schufen die Forscher gedruckte LEDs mit einer weit höheren Leuchtkraft und deutlich besseren elektrischen Eigenschaften als sie bislang mit additiven Fertigungsverfahren erreichbar waren. Doch für Emil List-Kratochvil ist dieser Erfolg nur ein Zwischenschritt auf dem Weg zu einer künftigen Mikro- und Optoelektronik, die seiner Meinung nach ausschließlich auf hybriden Perowskit-Halbleitern basiert. „Die Vorteile, die eine universell einsetzbare Klasse von Materialien bietet, aus der sich beliebige Bauteile mit einem einzigen einfachen und kostengünstigen Verfahren fertigen lassen, sind bestechend“, meint der Wissenschaftler. In dem Berliner Labor von HZB und HU will er daher nach und nach alle relevanten elektronischen Bauelemente auf diese Weise herstellen.  

Emil List-Kratochvil ist Professor für Hybride Bauelemente an der Berliner Humboldt-Universität (HU) und Leiter eines 2018 gegründeten Joint Labs, das von der HU gemeinsam mit dem HZB betrieben wird. Darüber hinaus arbeitet im „Helmholtz Innovation Lab HySPRINT“ ein Team um List-Kratochvil und der HZB-Wissenschaftlerin Dr. Eva Unger an der Entwicklung von Beschichtungs- und Druckverfahren – im Fachjargon auch additive Fertigung genannt – für hybride Perowskite, das sind Kristalle mit Perowskit-Struktur, die sowohl anorganische als auch organische Bestandteile enthalten.

Die Arbeit wurde im Journal Materials Horizons veröffentlicht: „Finally, inkjet-printed metal halide perovskite LEDs – utilizing seed crystal templating of salty PEDOT:PSS“. Felix Hermerschmidt, Florian Mathies, Vincent R. F. Schröder, Carolin Rehermann, Nicolas Zorn Morales, Eva L. Unger, Emil. J. W. List-Kratochvil.
DOI: 10.1039/d0mh00512f

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.