Launch of new catalysis centre in HZB-Adlershof

The new CatLab (blue area) will be built in close proximity to BESSY II and other laboratories.

The new CatLab (blue area) will be built in close proximity to BESSY II and other laboratories. © HZB

The Helmholtz-Zentrum Berlin (HZB) is launching a major new project through an interdisciplinary architectural competition: an innovative laboratory and office building for expanding joint catalysis research between the HZB and the Max Planck Society (MPS). Catlab is to become an international beacon for catalysis research that will advance the development of novel catalyst materials urgently needed for the energy transition.

The starting signal has been given: the Helmholtz-Zentrum Berlin (HZB) is inviting architecture and engineering firms to enter an architectural design competition for an innovative office and laboratory building for conducting advanced research. The building is to meet federal sustainability criteria.

The new building will greatly broaden and enhance R&D activities in the field of catalysis research at all points of the innovation process. Novel catalyst materials are destined to play a central role in the energy transition by helping replace fossil fuels with both hydrogen and synthetic fuels that can be produced using renewable energy.

It is for this reason that the HZB, the Max Planck Institute for Chemical Energy Conversion, and the Fritz Haber Institute of the MPS are launching the long-term CatLab project in Berlin. The project partners intend to advance the development of energy-related catalysts in CatLab at the HZB-Adlershof site. CatLab’s close proximity to HZB’s BESSY II synchrotron source and its supporting laboratories with their diverse analysis and characterisation methods will produce major synergies.

The building will be located at Magnusstraße 10 in Berlin-Adlershof. An essential feature of the building must be modular expandability. Laboratory and office space should be seamlessly integrated with an Innovation Centre and a data science platform. The laboratory and office requirements that are essential for CatLab should be covered by the initial construction phase. Two further building sections are planned that will provide a location for research activities in the field of Data Science, and establish an anchor for further large industrial collaborations with space for everything from initial exploratory experiments to fully mature applications.

arö

  • Copy link

You might also be interested in

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • How carbonates influence CO2-to-fuel conversion
    Science Highlight
    25.11.2025
    How carbonates influence CO2-to-fuel conversion
    Researchers from the Helmholtz Zentrum Berlin (HZB) and the Fritz Haber Institute of the Max Planck Society (FHI) have uncovered how carbonate molecules affect the conversion of CO2 into valuable fuels on gold electrocatalysts. Their findings reveal key molecular mechanisms in CO2 electrocatalysis and hydrogen evolution, pointing to new strategies for improving energy efficiency and reaction selectivity.

  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.