Robuste Hochleistungs-Datenspeicher durch magnetische Anisotropie

So lief das Experiment ab: Zwei Laserpulse treffen in kurzem zeitlichen Abstand auf den Dünnfilm aus Eisen-Platin-Nanokörnchen auf: Der erste Laserpuls zerstört die Spinordnung, während der zweite Laserpuls die nun unmagnetisierte Probe anregt. Ein Röntgenpuls ermittelt im Anschluss, wie sich das Gitter ausdehnt oder kontrahiert.

So lief das Experiment ab: Zwei Laserpulse treffen in kurzem zeitlichen Abstand auf den Dünnfilm aus Eisen-Platin-Nanokörnchen auf: Der erste Laserpuls zerstört die Spinordnung, während der zweite Laserpuls die nun unmagnetisierte Probe anregt. Ein Röntgenpuls ermittelt im Anschluss, wie sich das Gitter ausdehnt oder kontrahiert. © M. Bargheer/ Uni Potsdam

Der Videoclip zeigt die Ausdehnung und Kontraktion von unterschiedlichen FePt-Proben. © Alexander von Reppert, Aurelien Crut

12.18 s

Die neueste Generation von magnetischen Festplattenlaufwerken besteht aus magnetischen Dünnschichten, die zu den Invar-Materialien zählen und eine extrem robuste und hohe Datenspeicherdichte ermöglichen. Ein technologisch relevantes Material für solche HAMR-Datenspeicher sind Dünnschichten aus Eisen-Platin-Nanokörnern. Ein internationales Team um die gemeinsame Forschungsgruppe von Prof. Dr. Matias Bargheer am HZB und der Uni Potsdam hat nun erstmals experimentell beobachtet, wie in diesen Eisen-Platin-Dünnschichten eine besondere Spin-Gitter-Wechselwirkung die Wärmeausdehnung des Kristallgitters aufhebt. Die Arbeit ist in Science Advances publiziert.

In HAMR-Datenspeichern aus Invar-Materialien werden winzigste Nanodomänen durch lokales Erhitzen mit einem Laser beschrieben. Dabei dehnt sich das Volumen solcher Invar-Materialien trotz Erhitzung kaum aus. Dieses Phänomen ist schon im Jahr 1897 bei der Nickel-Eisen Legierung „Invar“ beobachtet worden, aber erst seit wenigen Jahren versteht die Fachwelt, wie es zustande kommt: Normalerweise führt Erwärmung von Festkörpern zu Gitterschwingungen, die eine Ausdehnung bewirken, weil die vibrierenden Atome mehr Platz brauchen. Erstaunlicherweise führt das Erwärmen der Spins in FePt aber zum gegenteiligen Effekt: Je wärmer die Spins sind, desto stärker zieht sich das Material entlang der Magnetisierungsrichtung zusammen. Das Resultat ist die von Invar bekannte Eigenschaft: eine minimale Ausdehnung.

Dieses faszinierende Phänomen hat nun ein Team um Prof. Matias Bargheer erstmals an unterschiedlichen Eisen-Platin-Dünnschichten experimentell verglichen. Bargheer leitet eine gemeinsame Forschergruppe am Helmholtz-Zentrum Berlin und der Universität Potsdam. Gemeinsam mit Kollegen aus Lyon, Brno und Chemnitz wollte er untersuchen, wie sich das Verhalten von perfekt kristallinen FePt-Schichten von den FePt-Dünnschichten unterscheidet, die für HAMR-Speicher verwendet werden. Diese bestehen aus kristallinen Nanokörnern aus übereinandergestapelten einatomaren Lagen von Eisen und Platin, die in eine Matrix aus Kohlenstoff eingebettet sind.

Mit zwei kurz aufeinanderfolgenden Laserpulsen wurden die Proben lokal erhitzt und angeregt, um anschließend durch Röntgenbeugung zu messen, wie stark sich das Kristallgitter lokal ausdehnt oder kontrahiert.

„Wir waren überrascht, dass sich die kontinuierlichen kristallinen Schichten ausdehnen, wenn man sie kurz mit Laserlicht erhitzt, während sich lose angeordnete Nanokörner in der gleichen Kristallorientierung zusammenziehen“, erklärt Bargheer. „Für die HAMR-Datenspeicher werden dagegen Nanokörner verwendet, die in eine Matrix aus Kohlenstoff eingebettet sind und auf einem Substrat festgewachsen sind: Die reagieren viel schwächer auf die Laseranregung und ziehen sich erst etwas zusammen und dehnen sich dann etwas aus.“

 „Wir haben durch diese Experimente mit ultrakurzen Röntgenpulsen feststellen können, wie wichtig die Morphologie, also der genaue Aufbau solcher Dünnschichten ist“, sagt Alexander von Reppert, Erstautor der Studie und Doktorand in der Gruppe um Bargheer. Das Geheimnis ist die Querkontraktion, die auch Poisson-Effekt genannt wird. „Das kennt jeder, der schon einmal fest auf einen Radiergummi gedrückt hat“, sagt Bargheer. „Das Gummi wird in der Mitte dicker.“ Und von Reppert ergänzt: „Das können die Nanoteilchen auch, während beim perfekten Film kein Platz zur Ausdehnung in der Filmebene ist, die aber für eine spin-getriebene Kontraktion senkrecht zum Film benötigt wird.“

FePt ist also ein ganz besonderes Material. Es hat nicht nur außergewöhnlich robuste magnetische Eigenschaften. Seine thermomechanischen Eigenschaften verhindern auch, dass bei Erhitzung zu starke Verspannungen entstehen, die das Material zerstören würden -  und das ist für HAMR wichtig!

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.