Neue Molekülbibliothek für systematische Suche nach Wirkstoffen

Für die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molekülenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Moleküle) an das Enzym andocken.Jede gefundene Substanz ist einpotentieller Startpunkt für die Entwicklung größerer Moleküle.

Für die Studie wurde u.a. das Enzym Endothiapepsin (grau) mit Molekülenaus der Fragmentibliothek in Kontakt gebracht. Die Analysen zeigen nun,dass zahlreiche Substanzen (blaue und orange Moleküle) an das Enzym andocken.Jede gefundene Substanz ist einpotentieller Startpunkt für die Entwicklung größerer Moleküle. © J. Wollenhaupt/HZB

Die Fragmentbibliotheken, die das MX-Team gemeinsam mit einer Gruppe der Uni Marburg aufgebaut hat, stehen auch den Nutzern an BESSY II zur Verfügung. Die Grafik zeigt den Ablauf der Untersuchung.

Die Fragmentbibliotheken, die das MX-Team gemeinsam mit einer Gruppe der Uni Marburg aufgebaut hat, stehen auch den Nutzern an BESSY II zur Verfügung. Die Grafik zeigt den Ablauf der Untersuchung. © HZB

Um die systematische Entwicklung von Medikamenten zu beschleunigen, hat das MX-Team am Helmholtz-Zentrum Berlin (HZB) mit der Drug Design Gruppe der Universität Marburg eine neue Substanzbibliothek aufgebaut. Sie besteht aus 1103 organischen Molekülen, die als Bausteine von neuen Wirkstoffen infrage kommen. Das MX-Team hat diese Bibliothek nun in Kooperation mit der FragMAX-Gruppe am MAX IV validiert. Die Substanzbibliothek des HZB steht weltweit für die Forschung zur Verfügung und spielt auch bei der Suche nach Wirkstoffen gegen SARS-CoV-2 eine Rolle.

Damit Medikamente wirken, müssen sie in der Regel an Proteine im Organismus andocken. Wie ein Schlüssel ins Schloss muss ein Teil des Wirkstoffmoleküls in Vertiefungen oder Hohlräume des Zielproteins passen. Seit einigen Jahren arbeitet das Team der Abteilung Makromolekulare Kristallographie (MX) am HZB um Dr. Manfred Weiss zusammen mit der Gruppe Drug-Design um Prof. Dr. Gerhard Klebe (Uni Marburg) daher am Aufbau von sogenannten Fragment-Bibliotheken. Sie bestehen aus kleinen organischen Molekülen (Fragmenten), mit denen sich die funktionell wichtigen Hohlräume und Vertiefungen auf der Oberfläche von Proteinen ausloten und kartieren lassen. Proteinkristalle werden dafür mit den Fragmenten getränkt und anschließend mit starkem Röntgenlicht analysiert. Dadurch lassen sich 3D-Strukturinformationen mit atomarer Auflösung ermitteln. Unter anderem kann man so herausfinden, wie gut ein bestimmtes Molekülfragment am Zielprotein andockt. Der Aufbau dieser Substanzbibliotheken fand im Rahmen des Verbrundforschungsprojekts Frag4Lead statt und wurde durch das Bundesministerium für Bildung und Forschung (BMBF) gefördert.

Das MX-Team (MX steht für Makromolekulare Kristallographie) hat nun das Design einer chemisch vielfältigen Fragmentbibliothek publiziert, die als „F2X-Universal“- Bibliothek bezeichnet wird und aus 1103 Verbindungen besteht. Aus dieser Bibliothek wurde eine repräsentative Auswahl von 96 Verbindungen extrahiert, die als F2X-Entry-Screen bezeichnet wird. Diese Auswahl ist nun im Zug dieser Publikation erfolgreich durch das MX-Team des HZB an der Röntgenquelle MAX IV in Lund, Schweden und am BESSY II getestet worden.

In der Studie verifizierten die Teams von HZB und MAX IV die Effizienz der F2X-Entry-Bibliothek durch Screening der Zielenzyme Endothiapepsin und des Aar2/Rnase-H-Komplexes. Im nächsten Schritt werden die Forscher des MX-Teams auch die gesamte Universalbibliothek zum Einsatz bringen.

"Für diese Studie haben die Berliner Fragment-Screening-Experten von HZB-BESSY II sehr eng mit dem FragMAX-Projekt-Team von MAX IV zusammen gearbeitet", sagte Dr. Uwe Müller, vom MX-Team am HZB, der sowohl die drei MX-Beamlines an BESSY II als auch die BioMAX-Beamline an MAX IV mit aufgebaut hat. "Dabei konnten beide Partner ihre eigenen Technologie-Plattformen weiterentwickeln und zur Abbildung der funktionellen Oberflächen verschiedener Proteine einsetzen. Dies ist eine hervorragende Grundlage für zukünftige Kooperationen zwischen MAX IV und dem HZB“.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • KI analysiert Dinosaurier-Fußabdrücke neu
    Science Highlight
    27.01.2026
    KI analysiert Dinosaurier-Fußabdrücke neu
    Seit Jahrzehnten rätseln Paläontolog*innen über geheimnisvolle dreizehige Dinosaurier-Fußabdrücke. Stammen sie von wilden Fleischfressern, sanften Pflanzenfressern oder sogar frühen Vögeln? Nun hat ein internationales Team künstliche Intelligenz eingesetzt, um dieses Problem anzugehen – und eine kostenlose App entwickelt, die es jeder und jedem ermöglicht, die Vergangenheit zu entschlüsseln.