„Upconversion“ von Photonen bei schwacher Lichtintensität – der Schlüssel zu neuen Anwendungen in Energie- und Biotechnik

Periodische Metaoberflächen (grau) können die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Größenordnungen steigern.

Periodische Metaoberflächen (grau) können die Photon Aufkonvertierung durch Nanoteilchen (gelb) um mehr als drei Größenordnungen steigern. © BAM/Christian Würth

Durch Umwandlung von energiearmen in energiereiche Photonen lässt sich der nutzbare Bereich des Lichtspektrums deutlich erweitern. Doch bisher gelang das nur bei hoher Lichtintensität. Durch die Kombination bestimmter Nanopartikel mit einer sogenannten Metaoberfläche konnten Wissenschaftler des HZB und der Bundesanstalt für Materialforschung und -prüfung (BAM) den Effekt erstmals auch für relativ schwaches Licht nutzbar machen. Das ebnet den Weg für künftige Anwendungen in der Photovoltaik, zum Nachweis biologischer Substanzen oder als Messfühler für elektrische Felder.

Manche Materialien zeichnen sich durch eine besondere Eigenschaft aus: Sie sind in der Lage, langwelliges Licht in Licht mit deutlich kürzerer Wellenlänge umzuwandeln. Dazu vereinen sie je zwei oder mehr energiearme Photonen zu einem Photon mit höherem Energiegehalt. Physiker sprechen dabei von Aufkonvertierung oder Upconversion. Dieser Effekt eröffnet etwa in der Photovoltaik die Möglichkeit, auch bislang nicht genutzte Anteile des Sonnenlichts für die Gewinnung von elektrischer Energie nutzbar zu machen. „In den heute verwendeten Solarzellen, die meist aus Silizium bestehen, gilt das für infrarotes Licht mit Wellenlängen von mehr als etwa 1200 Nanometern, das bei der Stromerzeugung verlorengeht“, sagt Prof. Dr. Christiane Becker, die am Helmholtz-Zentrum Berlin für Materialien und Energie (HZB)  eine Nachwuchsforschungsgruppe leitet (Nano SIPPE). Durch Upconversion ließe sich der Verlust an Licht verringern und die energetische Effizienz von Solarzellen so deutlich verbessern.

Das Manko der Intensitätsabhängigkeit beseitigt

Dass dieser Trick bislang technisch nicht angewandt wird, liegt vor allem an der geringen Umwandlungseffizienz der zum Aufkonvertieren von Photonen geeigneten Materialien. „Man benötigt für diesen Prozess sehr hohe Lichtintensitäten“, sagt Becker. „Das Sonnenlicht ist dafür schlichtweg zu schwach.“ Doch gemeinsam mit einem Team um Dr. Christian Würth und Dr. Ute Resch-Genger vom Fachbereich Biophotonik der BAM in Berlin fanden Becker und ihre Arbeitsgruppe nun einen Weg, um den Upconversion-Effekt auch dafür zu erschließen: Dazu beschichteten die Forscherinnen eine sogenannte Metaoberfläche – eine Materialoberfläche, die eine regelmäßige Struktur im Maßstab weniger Nanometer besitzt – mit Nanoteilchen. Sie bestehen aus den Elementen Natrium, Yttrium, Fluor, Ytterbium und Erbium (UCNP) und können durch Upconversion infrarotes in sichtbares Licht umwandeln.

Durch experimentelle Messungen und Computersimulationen konnten die Berliner Forschergruppen belegen, dass die spezielle Struktur an bestimmten Stellen der Metaoberfläche die Intensität des eingestrahlten Lichts enorm verstärkt und so eine wirkungsvolle Wandlung der Wellenlänge ermöglicht. Der Vergleich mit einer ebenen Oberfläche ohne Nanostrukturierung zeigte: Bei einer geeigneten Dimensionierung der Beschichtung aus UCNP-Nanoteilchen lässt sich eine bis zu tausendfache Verstärkung der elektrischen Feldstärke in den Lichtwellen erreichen.

Nachweis von Nukleinsäuren oder Antikörpern

Eine mögliche Anwendung dafür sieht die HZB-Wissenschaftlerin neben der Photovoltaik vor allem auch in der Biotechnologie.  Biologische Substanzen wie der Erbsubstanz DNA (Desoxyribonukleinsäure) oder Antikörper der menschlichen Immunabwehr könnten mithilfe dieses Effekts detektiert werden. Die Idee der Berliner Forscher: „Man könnte das Upconversion-Material an solchen Molekülen oder biochemischen Partikeln befestigen“, erklärt Becker. „Dann ließen sich nachzuweisenden Substanzen mit infrarotem Licht anregen – und beispielsweise mit grünem Licht nachweisen.“ Der Vorteil: So wären das anregende und das detektierte Licht spektral strikt voneinander getrennt – anders als bei herkömmlichen Verfahren, bei denen sich die beiden Lichtanteile teils gegenseitig beeinflussen und den Nachweis dadurch erschweren. „Somit wäre es möglich, auch sehr geringe Konzentrationen etwa von Antikörpern zuverlässig zu messen“, sagt die Wissenschaftlerin.

Sie hat zudem eine weitere mögliche Anwendung des Upconversion-Effekts im Visier: „Da die Eigenschaften der dabei verwendeten Nanoteilchen genau bekannt sind, lässt sich aus dem Verhältnis der Intensitäten von rotem oder infrarotem und grünem Licht auf die Stärke des elektrischen Feldes an der Metaoberfläche schließen“, erklärt sie. Dass das funktioniert, haben die Forscher von BAM und HZB in ihren Experimenten ebenfalls belegt. Damit haben sie einen neuartigen und hochempfindlichen Sensor für elektrische Feldstärken im Nanobereich geschaffen.

Die Arbeit wurde in Nano Letters veröffentlicht: „Metasurface enhanced sensitized photon upconversion: towards highly efficient low power upconversion applications and nano-scale E-field sensors“. Christian Würth, Phillip Manley, Robert Voigt, Doğuşcan Ahiboz, Christiane Becker, Ute Resch-Genger.

DOI: https://dx.doi.org/10.1021/acs.nanolett.0c02548

red

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Science Highlight
    09.09.2024
    Grüner Wasserstoff: MXene als Katalysatoren für die Sauerstoffentwicklung geeignet
    Die Materialklasse der MXene besitzt vielfältige Talente. Nun hat ein internationales Team um HZB-Chemikerin Michelle Browne gezeigt, dass MXene als Katalysatoren für die Sauerstoffentwicklungsreaktion bei der elektrolytischen Wasserspaltung geeignet sind. Dabei arbeiten sie stabiler und effizienter als die derzeit besten Metalloxid-Katalysatoren. Das Team hat die neuartigen Katalysatoren für die elektrolytische Aufspaltung von Wasser nun umfassend an der Berliner Röntgenquelle BESSY II und am Synchrotron Soleil, Frankreich, charakterisiert.
  • Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    Science Highlight
    23.08.2024
    Trillium-Gitter in Langbeiniten ermöglicht Quantenphänomen
    In der Materialklasse der Langbeinite wurde eine 3D-Quantenspinflüssigkeit entdeckt. Gründe für dieses ungewöhnliche Verhalten liegen in der kristallinen Struktur und den dadurch bedingten besonderen magnetischen Wechselwirkungen. Dies hat nun ein internationales Team durch Experimente an der Neutronenquelle ISIS und theoretische Modellierungen an einer Nickel-Langbeinit-Probe gezeigt.
  • Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Science Highlight
    31.07.2024
    Grüner Wasserstoff: 'Künstliches Blatt' wird unter Druck besser
    Wasserstoff kann in speziellen Anlagen über die elektrolytische Aufspaltung von Wasser erzeugt werden. Dabei ist eine Option die Verwendung von Photoelektroden, die Sonnenlicht in Spannung für die Elektrolyse umwandeln. Nun zeigt ein Forschungsteam am HZB, dass die Effizienz solcher photoelektrochemischen Zellen (PEC-Zellen) unter Druck noch deutlich steigen kann.