Universität Kassel und HZB gründen Joint Lab zur Nutzung künstlicher Intelligenz

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB.

Blick in die Experimentierhalle von BESSY II am Helmholtz-Zentrum Berlin. An zirka 50 Strahlrohren führen Forschende Experimente durch. Diese Daten mithilfe von künstlicher Intelligenz effizienter auszuwerten, ist Ziel der Kooperation zwischen Universität Kassel und dem HZB. © HZB/M. Setzpfand

Die Universität Kassel und das Helmholtz-Zentrum Berlin (HZB) richten ein gemeinsames Labor für die Nutzung künstlicher Intelligenz ein, um neue experimentelle Methoden weiterzuentwickeln und die Datenauswertung von Experimenten an BESSY II deutlich zu verbessern.

Jedes Jahr kommen fast 3000 Nutzergruppen aus der ganzen Welt an den Elektronenspeicherring BESSY II, um verschiedenste Materialien mit dem brillanten Röntgenlicht zu untersuchen. „Bei der Erforschung aktueller wissenschaftlicher Fragestellungen, beispielsweise an BESSY II, fallen derart viele Daten an, dass sie mit herkömmlichen Analyseprogrammen nur noch schwer ausgewertet werden können. Im Joint Lab werden dafür Methoden der künstlichen Intelligenz entwickelt und eingesetzt. Diese Methoden sollen es darüber hinaus ermöglichen, auch in anderen naturwissenschaftlich-technischen Bereichen völlig neue Versuchsszenarien zu denken, die in der Vergangenheit als nicht auswertbar erschienen“, sagt Prof. Dr. Arno Ehresmann. Er ist Vizepräsident an der Universität Kassel und dort unter anderem zuständig für den Bereich Forschungsförderung.

Das HZB und die Universität Kassel haben kürzlich einen Kooperationsvertrag zum Aufbau des Joint Lab „Artificial Intelligence Methods for Experiment Design (AIM-ED)“, geschlossen. Ein Joint Lab ist eine in der Helmholtz-Gemeinschaft etablierte, mittel- bis langfristig angelegte Kooperationsform mit Universitäten. „Wir freuen uns, dass wir die Expertisen der Universität Kassel und des Helmholtz-Zentrums Berlin in der künstlichen Intelligenz zusammenführen können, um gemeinsam an wegweisenden Fragestellungen zu arbeiten“, schildert Prof. Ehresmann.

So wird sich das Kasseler Institut für Informationstechnik-Gestaltung (ITeG) an dem Joint Lab beteiligen. „Auch mehrere besonders forschungsstarke Arbeitsgruppen der Physik werden sich mit der Anwendung von KI-Methoden zum Design, zur Auswertung oder Optimierung von Experimenten beschäftigen, unter anderem im Rahmen eines DFG-Sonderforschungsbereichs“, sagt Prof. Ehresmann. Ebenfalls beteiligt sein wird das Fachgebiet Intelligent Embedded Systems unter der Leitung von Prof. Dr. Bernhard Sick, der sich seit langem intensiv mit Fragen des maschinellen Lernens und der Künstlichen Intelligenz beschäftigt.

Durch das neugegründete Joint Lab gebe es viele Synergieeffekte, betont auch Dr. Gregor Hartmann, betreuender Forscher am Helmholtz-Zentrum Berlin. „Bei den Experimenten an BESSY II entstehen immense Datenmengen, wobei neben der Größe der Daten insbesondere die Komplexität und das Verständnis ihrer Entstehung entscheidend für eine gute Auswertung sind.“ Das HZB hat viel Expertise in der Strahlrohr-Entwicklung, während die Arbeitsgruppe von Prof. Ehresmann die Sicht als langjähriger BESSY II-Nutzer und Detektor-Know-how einbringt. Die breitgefächerten Methoden der künstlichen Intelligenz, die Prof. Bernhard Sicks Team abdecke, ermöglichen eine bestmögliche Auswertung der Daten. „Ich freue mich sehr auf die intensive und spannende Zusammenarbeit im Rahmen des JointLab“, sagt Hartmann.

(Uni Kassel/sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Science Highlight
    13.08.2025
    Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht
    Wasserstoff wird künftig eine wichtige Rolle spielen, als Brennstoff und als Rohstoff für die Industrie. Um jedoch relevante Mengen an Wasserstoff zu produzieren, muss Wasserelektrolyse im Multi-Gigawatt-Maßstab machbar werden. Ein Engpass sind die benötigten Katalysatoren, insbesondere Iridium ist ein extrem seltenes Element. Eine internationale Kooperation hat daher Iridiumfreie Katalysatoren für die saure Wasserelektrolyse untersucht, die auf dem Element Kobalt basieren. Durch Untersuchungen, unter anderem am LiXEdrom an der Berliner Röntgenquelle BESSY II, konnten sie Prozesse bei der Wasserelektrolyse in einem Kobalt-Eisen-Blei-Oxid-Material als Anode aufklären. Die Studie ist in Nature Energy publiziert.
  • MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Science Highlight
    13.08.2025
    MXene als „Rahmen“ für zweidimensionale Wasserfilme zeigt neue Eigenschaften
    Ein internationales Team unter Leitung von Dr. Tristan Petit und Prof. Yury Gogotsi hat MXene mit eingeschlossenem Wasser und Ionen an der BESSY II untersucht. Dabei ging das Wasser mit steigender Temperatur vom Zustand als lokalisierte Eiskluster in einen quasi-zweidimensionalen Wasserfilm über. Das Team entdeckte dabei, dass diese strukturellen Veränderungen des eingeschlossenen Wassers im MXene einen reversiblen Phasenübergang bewirken: vom Metall zum Halbleiter. Dies könnte die Entwicklung neuartiger Bauelemente oder Sensoren auf Basis von MXenen ermöglichen.
  • Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbstorganisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.