University of Kassel and HZB establish Joint Lab for the use of artificial intelligence

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently.

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently. © HZB/M. Setzpfand

The University of Kassel and Helmholtz-Zentrum Berlin are setting up a joint laboratory for the use of artificial intelligence, where they will be developing new experimental methods and improving the analysis of data from experiments performed at BESSY II.

Every year, nearly 3000 user groups from around the world visit the electron storage ring BESSY II to study an immense variety of materials using the brilliant X-ray light the ring generates. “In the research of current scientific problems, at BESSY II for example, so much data accumulates that it can barely be analysed using conventional analytical programs. In the Joint Lab, we will be developing and employing methods of artificial intelligence to do this analysis. These methods should even allow us to think up entirely new test scenarios in other scientific and technical areas that have always seemed beyond our analytical capabilities in the past,” says Prof. Dr. Arno Ehresmann, the vice president of the University of Kassel, who is also responsible for research funding.

HZB and the University of Kassel recently signed a joint cooperation agreement to set up the Joint Lab Artificial Intelligence Methods for Experiment Design (AIM-ED). A Joint Lab is a medium- to long-term form of cooperation established between the Helmholtz Association and universities. “We are pleased to be able to combine the expertise in artificial intelligence of the University of Kassel and Helmholtz-Zentrum Berlin in this way, for working on groundbreaking solutions together,” says Prof. Ehresmann.

One institute involved in the Joint Lab is the Kassel Research Center for Information System Design (ITeG). “There will also be several particularly strong research groups from the physics department working on the application of AI methods for the design, analysis or optimisation of experiments, including within a DFG Special Research Area,” Prof. Ehresmann says. The Intelligent Embedded Systems Group will also be involved, under the direction of Prof. Dr. Bernhard Sick, who has long been working intensively in the field of machine learning and artificial intelligence.

There are many synergies arising from the newly founded Joint Lab, emphasises Dr. Gregor Hartmann, a supervising researcher at Helmholtz-Zentrum Berlin. “The experiments at BESSY II generate immense amounts of data, where not only the volume of the data but also the complexity and understanding of their creation are decisive for good analysis.” HZB has great expertise in beamline development, and Prof. Ehresmann’s workgroup is contributing its expertise in detectors from the perspective of a long-term BESSY II user. The broad range of artificial intelligence methods covered by Prof. Bernhard Sick’s team will allow the best possible analysis of data. “I am very much looking forward to the intensive and exciting cooperation in this Joint Lab,” says Hartmann.

(Uni Kassel/sz)

  • Copy link

You might also be interested in

  • AI in Chemistry: Study Highlights Strengths and Weaknesses
    News
    04.06.2025
    AI in Chemistry: Study Highlights Strengths and Weaknesses
    How well does artificial intelligence perform compared to human experts? A research team at HIPOLE Jena set out to answer this question in the field of chemistry. Using a newly developed evaluation method called “ChemBench,” the researchers compared the performance of modern language models such as GPT-4 with that of experienced chemists. 

  • TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    News
    30.05.2025
    TH Wildau and Helmholtz Zentrum Berlin signed comprehensive cooperation
    On 21 May 2025, the Technical University of Applied Sciences Wildau (TH Wildau) and the Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), signed a comprehensive cooperation agreement. The aim is to further promote networking and cooperation, particularly in basic research, to increase the scientific excellence of both partners and to develop competence networks in research, teaching and the training of young scientists.

  • Green hydrogen: MXene boosts the effectiveness of catalysts
    Science Highlight
    29.05.2025
    Green hydrogen: MXene boosts the effectiveness of catalysts
    MXenes are adept at hosting catalytically active particles. This property can be exploited to create more potent catalyst materials that significantly accelerate and enhance the oxygen evolution reaction, which is one of the bottlenecks in the production of green hydrogen via electrolysis using solar or wind power. A detailed study by an international team led by HZB chemist Michelle Browne shows the potential of these new materials for future large-scale applications. The study is published in Advanced Functional Materials.