University of Kassel and HZB establish Joint Lab for the use of artificial intelligence

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently.

View into the experimental hall of the electron accelerator BESSY II at Helmholtz-Zentrum Berlin. Researchers carry out experiments at approximately 50 beamlines. The aim of the cooperation between the University of Kassel and the HZB is to use artificial intelligence to evaluate these data more efficiently. © HZB/M. Setzpfand

The University of Kassel and Helmholtz-Zentrum Berlin are setting up a joint laboratory for the use of artificial intelligence, where they will be developing new experimental methods and improving the analysis of data from experiments performed at BESSY II.

Every year, nearly 3000 user groups from around the world visit the electron storage ring BESSY II to study an immense variety of materials using the brilliant X-ray light the ring generates. “In the research of current scientific problems, at BESSY II for example, so much data accumulates that it can barely be analysed using conventional analytical programs. In the Joint Lab, we will be developing and employing methods of artificial intelligence to do this analysis. These methods should even allow us to think up entirely new test scenarios in other scientific and technical areas that have always seemed beyond our analytical capabilities in the past,” says Prof. Dr. Arno Ehresmann, the vice president of the University of Kassel, who is also responsible for research funding.

HZB and the University of Kassel recently signed a joint cooperation agreement to set up the Joint Lab Artificial Intelligence Methods for Experiment Design (AIM-ED). A Joint Lab is a medium- to long-term form of cooperation established between the Helmholtz Association and universities. “We are pleased to be able to combine the expertise in artificial intelligence of the University of Kassel and Helmholtz-Zentrum Berlin in this way, for working on groundbreaking solutions together,” says Prof. Ehresmann.

One institute involved in the Joint Lab is the Kassel Research Center for Information System Design (ITeG). “There will also be several particularly strong research groups from the physics department working on the application of AI methods for the design, analysis or optimisation of experiments, including within a DFG Special Research Area,” Prof. Ehresmann says. The Intelligent Embedded Systems Group will also be involved, under the direction of Prof. Dr. Bernhard Sick, who has long been working intensively in the field of machine learning and artificial intelligence.

There are many synergies arising from the newly founded Joint Lab, emphasises Dr. Gregor Hartmann, a supervising researcher at Helmholtz-Zentrum Berlin. “The experiments at BESSY II generate immense amounts of data, where not only the volume of the data but also the complexity and understanding of their creation are decisive for good analysis.” HZB has great expertise in beamline development, and Prof. Ehresmann’s workgroup is contributing its expertise in detectors from the perspective of a long-term BESSY II user. The broad range of artificial intelligence methods covered by Prof. Bernhard Sick’s team will allow the best possible analysis of data. “I am very much looking forward to the intensive and exciting cooperation in this Joint Lab,” says Hartmann.

(Uni Kassel/sz)

  • Copy link

You might also be interested in

  • 5000th patient treated with protons for eye tumours
    News
    19.08.2025
    5000th patient treated with protons for eye tumours
    For more than 20 years, Charité – Universitätsmedizin Berlin and the Helmholtz-Zentrum Berlin (HZB) have been jointly offering proton radiation therapy for eye tumours. The HZB operates a proton accelerator in Berlin-Wannsee for this purpose, while Charité provides medical care for the patients. The 5000th patient was treated at the beginning of August.
  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • MXene as a frame for 2D water films shows new properties
    Science Highlight
    13.08.2025
    MXene as a frame for 2D water films shows new properties
    An international team led by Dr. Tristan Petit and Prof. Yury Gogotsi has investigated MXene with confined water and ions at BESSY II. In the MXene samples, a transition between localised ice clusters to quasi-two-dimensional water films was identified by increasing temperature. The team also discovered that the intercalated water structure drives a reversible transition from metallic to semiconducting behaviour of the MXene film. This could enable the development of novel devices or sensors based on MXenes.