Solarer Wasserstoff: Maß für die Stabilität von Photoelektroden

Skalierbare gro&szlig;fl&auml;chige BiVO<sub>4</sub>-Photoanode auf FTO mit Ni-Stromabnehmern.

Skalierbare großflächige BiVO4-Photoanode auf FTO mit Ni-Stromabnehmern. © HZB

Mit den Ergebnissen l&auml;sst sich Stabilit&auml;t von BiVO<sub>4</sub> in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-Elektrolyten beurteilen.

Mit den Ergebnissen lässt sich Stabilität von BiVO4 in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-Elektrolyten beurteilen. © https://pubs.acs.org/doi/10.1021/acsaem.0c01904

Sonnenenergie kann zur Herstellung von Wasserstoff, einem vielseitigen Brennstoff, genutzt werden. Um dies durch elektrolytische Wasserspaltung zu erreichen, werden hochwertige Photoelektroden benötigt. Leider neigen die bekannten Materialien dazu, während des Prozesses zu korrodieren. Nun hat ein Team am HZB in internationaler Zusammenarbeit die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden untersucht. Sie beobachteten die Prozesse "in operando" (bei der elektrolytischen Wasserspaltung) während der Sauerstoff-Entwicklungsreaktion (OER). Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren verglichen und so auch verbessert werden kann.

Wasserstoff ist ein vielseitiger Brennstoff, der chemische Energie speichern und bei Bedarf freisetzen kann. Dieser Brennstoff lässt sich klimaneutral erzeugen, wenn man die elektrolytische Aufspaltung von Wasser in Wasserstoff und Sauerstoff mit Solarenergie erreicht. Für diesen Ansatz sind kostengünstige Photoelektroden erforderlich, die unter Beleuchtung eine bestimmte Photospannung liefern und in wässrigen Elektrolyten stabil bleiben.

Korrosion während der Elektrolyse

Hier liegt jedoch das Haupthindernis; konventionelle Halbleiter korrodieren in Wasser sehr schnell. Metalloxid-Dünnschichten sind viel stabiler, korrodieren aber dennoch mit der Zeit. Eines der erfolgreichsten Photoanodenmaterialien ist Wismutvanadat (BiVO4), ein komplexes Metalloxid, in dem die Photoströme bereits nahe an der theoretischen Grenze liegen. Die größte Herausforderung für eine kommerziell nutzbare PEC-Wasserspaltung besteht darin, die Stabilität von Photoelektrodenmaterialien während ihres PEC-Betriebs zu bewerten und zu verbessern.

Zu diesem Zweck hat ein Team des HZB-Instituts für Solare Brennstoffe unter der Leitung von Prof. Roel van de Krol zusammen mit Gruppen des Max-Planck-Instituts für Eisenforschung, des Helmholtz-Instituts Erlangen-Nürnberg für Erneuerbare Energien, der Universität Freiburg und des Imperial College London eine Reihe modernster Charakterisierungsmethoden eingesetzt, um die Korrosionsprozesse von hochwertigen BiVO4-Photoelektroden zu verstehen.

Von Beginn bis zum Ende untersucht

"Bisher konnten wir nur Photoelektroden vor und nach photoelektrochemischer Korrosion untersuchen", sagt Dr. Ibbi Ahmet (HZB), der die Studie zusammen mit Siyuan Zhang vom Max-Planck-Institut initiiert hat. "Es war ein bisschen so, als würde man nur das erste und das letzte Kapitel eines Buches lesen und nicht wissen, wie alle Charaktere gestorben sind". In einem ersten Schritt zur Lösung dieses Problems stellte der Chemiker eine Reihe von hochreinen BiVO4-Dünnfilmen zur Verfügung, die in einer neu konzipierten Durchflusszelle mit verschiedenen Elektrolyten unter Standardbeleuchtung untersucht wurden.

Erste "operando"-Stabilitätsstudie

Das Ergebnis ist die erste operando-Stabilitätsstudie von hochreinen BiVO4-Photoanoden während der photoelektrochemischen Sauerstoffentwicklungsreaktion (OER). Mit Hilfe der In-situ-Plasma-Massenspektrometrie (ICPMS) konnten sie in Echtzeit bestimmen, welche Elemente während der photoelektrochemischen Reaktion von der Oberfläche der BiVO4-Photoanoden gelöst wurden.

Stabilitätszahl S

"Aus diesen Messungen konnten wir einen nützlichen Parameter, die Stabilitätszahl (S), bestimmen", sagt Ahmet. Diese Stabilitätszahl wird aus dem Verhältnis zwischen den erzeugten O2-Molekülen und der Anzahl der gelösten Metallatome im Elektrolyten berechnet und ist in der Tat ein perfekt vergleichbares Maß für die Photoelektrodenstabilität. Die Stabilität einer Photoelektrode ist hoch, wenn die Spaltung von Wasser schnell voranschreitet (in diesem Fall die Entwicklung von O2) und nur wenige Metallatome in den Elektrolyten gelangen. Dieser Parameter kann auch verwendet werden, um die Veränderung der Photoelektrodenstabilität während ihrer Lebensdauer zu bestimmen oder Unterschiede in der Stabilität von BiVO4 in verschiedenen pH-gepufferten Borat-, Phosphat- und Citrat-(Lochfänger-)Elektrolyten zu beurteilen.

Gezielte Verbesserungen

Diese Arbeit zeigt, wie die Stabilität von Photoelektroden und Katalysatoren in der Zukunft verglichen werden kann. Die Autoren haben die Zusammenarbeit fortgesetzt und nutzen nun diese wertvollen Techniken und Erkenntnisse, um praktikable Lösungen zur Verbesserung der Stabilität von BiVO4-Fotoanoden zu entwerfen und deren Einsatz in langfristigen praktischen Anwendungen zu ermöglichen.

arö

Das könnte Sie auch interessieren

  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.