Berlin Science Week: Research Delivers – What is Slowing Down the Expansion of Solar Energy?

Thanks to new technologies from research, solar power does not cost more than coal-based electricity; but why is the expansion simply not getting off the ground?

Solar modules could also cover a considerable proportion of the energy requirements in cities - especially if the surfaces on the facades are also used in future. For this purpose, there are now a large number of aesthetically attractive facade solutions that also convert scattered light into electricity and are available in many colors and shapes. More and more solutions are emerging from research that enable even higher efficiencies and even lower module costs. The technologies are there and the kilowatt hour of solar power is no more expensive than coal-fired power. Yet the expansion is not getting off the ground. What is the reason for this?

Photovoltaics researchers from the Helmholtz-Zentrum Berlin (HZB) will meet with representatives from politics and industry in a panel discussion. They will discuss research successes, economic aspects, market strategies, political incentives, construction challenges and what is needed to ensure that more solar power soon finds its way into living rooms.

Panel:

  • Samira Jama Aden (Architect at Helmholtz-Zentrum Berlin | PVcomB | BAIP)
  • Prof. Steve Albrecht (Head of the young investigator group Perowskite Tandem Solar Cells, HZB)
  • Prof. Claudia Kemfert  (German Institute for Economic Research, Head of Department Energy, Transportation, Environment)
  • N.N.

Host: Prof. Rutger Schlatmann (Director of the Competence Centre Photovoltaics Berlin, PVcomB / HZB)

9. November 2020, 17.00 Uhr | Online

sa


You might also be interested in

  • Freeze casting - a guide to creating hierarchically structured materials
    Science Highlight
    25.04.2024
    Freeze casting - a guide to creating hierarchically structured materials
    Freeze casting is an elegant, cost-effective manufacturing technique to produce highly porous materials with custom-designed hierarchical architectures, well-defined pore orientation, and multifunctional surface structures. Freeze-cast materials are suitable for many applications, from biomedicine to environmental engineering and energy technologies. An article in "Nature Reviews Methods Primer" now provides a guide to freeze-casting methods that includes an overview on current and future applications and highlights characterization techniques with a focus on X-ray tomoscopy.
  • IRIS beamline at BESSY II extended with nanomicroscopy
    Science Highlight
    25.04.2024
    IRIS beamline at BESSY II extended with nanomicroscopy
    The IRIS infrared beamline at the BESSY II storage ring now offers a fourth option for characterising materials, cells and even molecules on different length scales. The team has extended the IRIS beamline with an end station for nanospectroscopy and nanoimaging that enables spatial resolutions down to below 30 nanometres. The instrument is also available to external user groups. 

  • Cooperation with the Korea Institute of Energy Research
    News
    23.04.2024
    Cooperation with the Korea Institute of Energy Research
    On Friday, 19 April 2024, the Scientific Director of Helmholtz-Zentrum Berlin, Bernd Rech, and the President of the Korea Institute of Energy Research (KIER), Yi Chang-Keun, signed a Memorandum of Understanding (MOU) in Daejeon (South Korea).