Future Information Technologies: Germanium telluride's hidden properties at the nanoscale revealed

The Fermi surface of multidomain GeTe (111) bulk single crystal measured with high-resolution angle-resolved photoemission at BESSY II.

The Fermi surface of multidomain GeTe (111) bulk single crystal measured with high-resolution angle-resolved photoemission at BESSY II. © HZB

Germanium Telluride is an interesting candidate material for spintronic devices. In a comprehensive study at BESSY II, a Helmholtz-RSF Joint Research Group has now revealed how the spin texture switches by ferroelectric polarization within individual nanodomains.

Germanium telluride (GeTe) is known as a ferrolectric Rashba semiconductor with a number of interesting properties. The crystals consist of nanodomains, whose ferrolectric polarization can be switched by external electric fields. Because of the so-called Rashba effect, this ferroelectricity can also be used to switch electron spins within each domain. Germanium telluride is therefore an interesting material for spintronic devices, which allow data processing with significantly less energy input.

Russian German Cooperation

Now a team from HZB and the Lomonosov Moscow State University, which has established a Helmholtz-RSF Joint Research Group, has provided comprehensive insights into this material at the nanoscale. The group is headed by physical chemist Dr. Lada Yashina (Lomonosov State University) and HZB physicist Dr. Jaime Sánchez-Barriga. "We have examined the material using a variety of state-of-the-art methods to not only determine its atomic structure, but also the internal correlation between its atomic and electronic structure at the nanoscale," says Lada Yashina, who produced the high-quality crystalline samples in her laboratory.

Nanodomains observed in detail

Their microscopy investigations showed that the crystals possess two distinct types of boundaries surrounding ferroelectric nanodomains with sizes between 10 to 100 nanometres. At BESSY II, the team was able to observe two surface terminations with opposite ferroelectric polarization, and to analyse how these terminations correspond to nanodomains with either Ge or Te atoms at the topmost surface layer.

Ferroelectric polarization and spin texture

"At BESSY II, we were able to precisely analyze the intrincate relationship between the spin polarization in the bulk or at the surface and the opposite configurations of the ferroelectric polarization”, explains Jaime Sánchez-Barriga. The scientists also determined how the spin texture switches by ferroelectric polarization within individual nanodomains. "Our results are important for potential applications of ferroelectric Rashba semiconductors in non-volatile spintronic devices with extended memory and computing capabilities at the nanoscale," emphasizes Sánchez-Barriga.

arö

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • AI re-examines dinosaur footprints
    Science Highlight
    27.01.2026
    AI re-examines dinosaur footprints
    For decades, paleontologists have pondered over mysterious three-toed dinosaur footprints. Were they left by fierce carnivores, gentle plant-eaters, or even early birds? Now, an international team has used artificial intelligence to tackle the problem—creating a free app that readily lets anyone decipher the past.
  • HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    News
    27.01.2026
    HZB expert appointed chair of the Scientific Advisory Board of the Barcelona Research Centre
    Prof. Dr. Susan Schorr has been appointed to the newly established Scientific Advisory Board of the Barcelona Research Centre in Multiscale Science and Engineering and elected as its chair.