Informationstechnologie: Besonderheiten von Germaniumtellurid auf der Nanoskala aufgedeckt

Die Fermioberfläche eines GeTe-Kristalls (111) konnte an BESSY II experimentell ermittelt werden.

Die Fermioberfläche eines GeTe-Kristalls (111) konnte an BESSY II experimentell ermittelt werden. © HZB

Germanium-Tellurid (GeTe) ist ein interessantes Material für die Spintronik. Nun hat ein deutsch-russisches Team an BESSY II gezeigt, wie sich die Spintextur in GeTe-Einkristallen durch ferroelektrische Polarisation innerhalb einzelner Nanodomänen umschalten lässt.

 

Germaniumtellurid (GeTe) ist als ferroelektrischer Rashba-Halbleiter mit einer Reihe von interessanten Eigenschaften bekannt. Die Kristalle bestehen aus Nanodomänen, die durch externe elektrische Felder polarisiert werden können. Aufgrund des sogenannten Rashba-Effekts kann in diesem Material die Ferroelektrizität auch dazu genutzt werden, die Elektronenspins innerhalb der Domänen umzuschalten.

Spintronik spart Energie

Germaniumtellurid ist daher ein interessantes Material für spintronische Bauelemente, die eine Datenverarbeitung mit deutlich geringerem Energieaufwand ermöglichen. Nun hat ein Team des HZB und der Lomonosov Moscow State University umfassende Einblicke in dieses Material auf der Nanoskala gegeben. Die Helmholtz-RSF-Joint Research Group wird Dr. Lada Yashina (Lomonosov-University) und Dr. Jaime Sánchez-Barriga (HZB) geleitet.

Strukturen auf der Nanoskala

"Wir haben das Material mit einer Reihe von komplementären Methoden untersucht, um seine atomare Struktur, und insbesondere auch die interne Korrelation zwischen der atomaren und elektronischen Struktur auf der Nanoskala zu bestimmen", sagt die Chemikerin Lada Yashina, die die hochwertigen kristallinen Proben in ihrem Moskauer Labor hergestellt hat.

Mikroskopische Untersuchungen zeigten, dass die  ferroelektrischen Nanodomänen von zwei verschiedenen Arten von Grenzflächen umgeben sind. An BESSY II konnte das Team diese Grenzflächen genau untersuchen und Nanodomänen mit entweder Germanium- oder Tellurium-Atomen an der obersten Oberflächenschicht zuordnen.

Ferroelektrizität und Spintexturen

"An BESSY II konnten wir dabei auch die Zusammenhänge zwischen der Spinpolarisation im Inneren oder an der Oberfläche der Domänen mit den Konfigurationen der ferroelektrischen Polarisation genau analysieren", erklärt der HZB-Physiker Jaime Sánchez-Barriga. Das Team ermittelte auch, wie die Spintextur durch ferroelektrische Polarisation innerhalb einzelner Nanodomänen wechselt. "Unsere Ergebnisse sind wichtig für potenzielle Anwendungen ferroelektrischer Rashba-Halbleiter in nichtflüchtigen Spintronik-Bauelementen mit erweiterten Speicher- und Rechenfähigkeiten auf der Nanoskala", betont Sánchez-Barriga.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.
  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.