Another innovative EU project with HZB participation kicked off

Symbol picture for BIPV (University of Zurich (Zh) - 100 kWp)

Symbol picture for BIPV (University of Zurich (Zh) - 100 kWp) © Planeco GmbH

The CUSTOM-ART consortium consists of 17 academic and industrial partners, involving world leading groups and main European actors involved in the development of kesterite technologies. It leads an ambitious and disruptive project for the development and demonstration of the next generation of building and product integrated photovoltaic modules (BIPV and PIPV) based on abundant thin-film materials. The project started September, 1st 2020 and will run for 3.5 years.

HZB contributes to the technology development by systematically investigating the structure-function relationship of kesterite-type materials as one of quaternary chalcogenide compound semiconductors. HZB will study the influence of alkali doping on the point defect scenario and level of structural disorder. These studies will rely on detailed structural investigations of kesterite-type monograins (based on neutron diffraction and multiple energy anomalous X-ray diffraction). Also HZB will contribute with combinatorial high-throughput materials optimization applying especially advanced optoelectronic analytics. HZB has a share of 550 TEUR out of the total funding based on budgeted total costs of 8M€.

G. Ehlgen

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.