Perowskit-Solarzellen: Auf dem Weg zum gezielten Design von Tinten für die industrielle Fertigung

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht.

Schematische Darstellung: Aus der Tinte bildet sich über Zwischenphasen eine polykristalline Perowskit-Dünnschicht. © HZB

Für die Herstellung von hochwertigen Perowskit-Dünnfilmen für großflächige Photovoltaikmodule werden oft optimierte „Tinten“ verwendet, die eine Mischung von Lösungsmitteln enthalten. Ein HZB-Team hat nun an BESSY II analysiert, wie die Kristallisationsprozesse in solchen Mischungen ablaufen. Mit einem neu entwickelten Modell ist es zudem nun möglich, die Kinetik der Kristallisationsprozesse für verschiedene Lösungsmittelgemische vorab zu bewerten. Dies ist hilfreich für die Produktion von Perowskit-Modulen im industriellen Maßstab.

Hybride organische Perowskit-Halbleiter ermöglichen Solarzellen mit hohen Wirkungsgraden bei niedrigen Kosten. Sie können aus Vorläuferlösungen hergestellt werden, die nach dem Auftragen auf ein Substrat einen polykristallinen Dünnfilm bilden. Einfache Herstellungsverfahren wie das Aufschleudern einer Vorläuferlösung führen oft nur im Labormaßstab, d.h. bei sehr kleinen Proben, zu guten Ergebnissen.

Perowskit-Schichten aus dem Tintendrucker

Für die Herstellung großflächiger Photovoltaikmodule entwickelt das Team von Dr. Eva Unger daher Druck- und Beschichtungsverfahren: Sie verwenden dabei „Tinten“ aus den in Lösungsmitteln gelösten Vorläufersubstanzen.  Die Zusammensetzung der Tinte ist entscheidend für die Qualität der späteren Dünnschicht: Die Lösungsmittel beeinflussen durch ihre Eigenschaften den Prozess der Kristallisation. „Unsere Forschungsfrage lautete: Wie können wir Unterschiede in der Kristallisationskinetik bei der Verwendung verschiedener Lösungsmittel vorab wissensbasiert abschätzen?" erklärt Unger, die am HZB die Nachwuchsgruppe Hybridmaterialbildung und Skalierung leitet.

Unterschiedliche Verdampfungsraten

In Lösungsmitteln mit nur einer Komponente wird der Kristallisationsprozess durch die Verdampfungsrate bestimmt. „Bei Mischungen aus verschiedenen Lösungsmitteln wird die Verdampfung von der flüchtigsten Komponente dominiert, die am schnellsten verdampft. Dadurch ändert sich das Verhältnis der Lösungsmittel, die bei der Kristallisation vorhanden sind", sagt Dr. Oleksandra Shargaieva, Postdoc in Ungers Team.  Am KMC-2-Strahlrohr von BESSY II konnte sie die Zwischenphasen während der Bildung der Perowskit-Dünnschicht analysieren. „Dabei spielen sowohl die Verdampfungsraten der Lösungsmittel als auch die Bindungsstärken an das Bleihalogenid eine Rolle“, sagt Shargaieva.

Wissensbasierte Optimierung

„Diese Erkenntnisse sind hilfreich, um die Kinetik der Kristallisationsprozesse des Perowskit-Dünnfilms für verschiedene Lösungsmittelkombinationen zu berechnen", sagt Shargaieva. Und Unger ergänzt: Beim Aufskalieren vom Labormaßstab mangelt es noch an systematischem Wissen. Mit diesen Ergebnissen ebnen wir den Weg für das wissensbasierte Design von Tinten, um die Herstellung von Perowskit-Dünnschichten im industriellen Maßstab oder von Perowskit-Dünnschichten hoher Qualität zu ermöglichen.“

arö


Das könnte Sie auch interessieren

  • Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Nachricht
    12.06.2024
    Chilenischer Präsident zu Besuch am Helmholtz-Zentrum Berlin
    Mit einer 50-köpfigen Delegation besuchte der chilenische Staatspräsident Gabriel Boric Font am Dienstag das HZB. Zu den großen Momenten des Abends zählten die Unterzeichnung eines Memorandum of Understanding zwischen der chilenischen „Gesellschaft für Produktionsförderung“ CORFO und dem HZB sowie der Besuch der Röntgenquelle BESSY II.
  • Alkane, Laserblitze und BESSYs Röntgenblick
    Science Highlight
    31.05.2024
    Alkane, Laserblitze und BESSYs Röntgenblick
    Einem internationalen Forschungsteam ist es gelungen, einen Zwischenschritt bei der Katalyse von Alkanen zu beobachten. Mit dem Verständnis dieser Reaktionen lassen sich in Zukunft bestehende Katalysatoren optimieren und neue finden, um zum Beispiel das Treibhausgas Methan in wertvolle Grundstoffe für die Industrie zu verwandeln.

  • Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Science Highlight
    23.05.2024
    Dynamische Messungen in Flüssigkeiten jetzt auch im Labor
    Ein Team aus Berliner Forscher*innen hat ein Laborspektrometer entwickelt, um chemische Prozesse in Lösung zu analysieren – und das mit 500 ps Zeitauflösung. Dies ist nicht nur für die Forschung an molekularen Prozessen in der Biologie interessant, sondern auch für die Entwicklung von neuartigen Katalysatormaterialien. Bisher war dafür allerdings meist Synchrotronstrahlung erforderlich, wie sie nur an großen, modernen Röntgenquellen wie BESSY II zur Verfügung steht. Nun funktioniert das Verfahren mit einer Plasmalichtquelle im Labormaßstab.