Accelerator Physics: HF-Couplers for bERLinPro prove resilient

For the measurement campaign, two couplers were mounted in a horizontal test position under a local clean room tent.

For the measurement campaign, two couplers were mounted in a horizontal test position under a local clean room tent. © A. Neumann/HZB

To generate the HF power, a 270 kW klystron is needed, among other things.

To generate the HF power, a 270 kW klystron is needed, among other things. © A. Neumann/HZB

In synchrotron light sources, an electron accelerator brings electron bunches to almost the speed of light so that they can emit the special "synchrotron light". The electron bunches get their enormous energy and their special shape from a standing electromagnetic alternating field in so-called cavities. With high electron currents, as required in the bERLinPro project, the power needed for the stable excitation of this high-frequency alternating field is enormous. The coupling of this high power is achieved with special antennas, so-called couplers, and is considered a great scientific and technical challenge. Now, a first measurement campaign with optimised couplers at bERLinPro shows that the goal can be achieved.

These couplers should supply the cavities with 230 kW in continuous operation at 1.3 GHz. The connection between the ultra-high vacuum of the cavities and the high-frequency transmission link must be guaranteed, both at liquid helium temperature (-269 degrees Celsius or 4 Kelvin) and at room temperature. In addition, clean room conditions must be maintained and particles down to the micrometre range must be removed. The power is to be transferred to the cavity by two couplers each, in order to reduce the individual load, but also to improve the stability of the electron trajectory in the accelerator.

High-performance couplers modified

Now, the team led by Axel Neumann from the HZB Institute SRF (Superconducting Radio Frequency Technologies) has been able to show that this goal is realistic. To do so, they modified the design of the high-performance couplers of a research group from the National Research Centre for High Energy Physics in Japan (KEK).

Measurements up to 45 kW

For the measurement campaign, two of the newly developed couplers were set up in tandem with a test box as a cavity substitute. The measurements started with low power, which was gradually increased up to 45 kW.  Initially, only short pulses were transmitted from the couplers to the cavity at longer intervals, here even up to powers of 100 kW. Then the intervals between the power pulses became shorter and shorter up to continuous operation.

Good News:  heat can be dissipated

The heat development was 0.25 Kelvin per kilowatt of power. At a final power of 120 kW, the material would heat up by about 30 degrees Kelvin. This is good news, because such amounts of heat are technically dissipatable through the planned cooling. "With the original Japanese design, the heat generation was higher by a factor of four than with our adapted form," explains Neumann.

Outlook: 120 kW

"We initially limited the measurements to power levels below 45 kW. Only when all couplers have been successfully tested at these powers will the next steps come. However, we are now very optimistic. If you extrapolate the figures, the coupler should indeed manage 120 kW in continuous operation without any problems," says Prof. Dr. Jens Knobloch, who heads the HZB Institute SRF Science and Technology.

Helmholtz-Programme for Accelerator Physics (ARD)

With its work on high-frequency cavities, HZB is contributing to the Helmholtz Association's research programme for accelerator physics (ARD = "Accelerator Research and Development"). A central topic of ARD is the development of superconducting high-frequency systems for accelerating high currents in continuous wave operation. Just recently, ARD was evaluated by an international panel and received top marks in all categories.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.