Blackbox-Verfahren für superschnelle Ergebnisse

Die elektronische Struktur komplexer Moleküle kann aus RIXS-Daten an BESSY II errechnet werden.

Die elektronische Struktur komplexer Moleküle kann aus RIXS-Daten an BESSY II errechnet werden. © Martin Künsting /HZB

Die elektronische Struktur von komplexen Molekülen und ihre chemische Reaktivität können mit Hilfe der Methode der resonanten inelastischen Röntgenstreuung (RIXS) an BESSY II untersucht werden. Allerdings erfordert die Auswertung von RIXS-Daten bisher sehr lange Rechenzeiten. Ein Team an BESSY II hat nun ein neues Simulationsverfahren entwickelt, das diese Auswertung stark beschleunigt. Die Ergebnisse können sogar während des Experiments berechnet werden. Messgäste können das Verfahren wie eine Blackbox nutzen.

Moleküle aus vielen Atomen sind komplexe Gebilde. Die Außenelektronen verteilen sich auf die unterschiedlichen Orbitale, und deren Gestalt entscheidet über das chemische Verhalten und die Reaktivität des Moleküls. Experimentell lassen sich Konfiguration und Besetzung dieser Orbitale durchaus ermitteln. An Synchrotronquellen mit hochbrillanter Röntgenstrahlung wie BESSY II steht dafür eine Methode zur Verfügung: Die resonante inelastische Röntgenstreuung (RIXS). Um von den Messdaten jedoch zu Aussagen über die Orbitale zu kommen, sind aufwändige quantenchemische Simulationen notwendig, typische Rechenzeiten für größere Moleküle dauern selbst an Großrechnern Wochen.  

„Bisher fanden diese Berechnungen meist im Anschluss an die Messungen statt“, erklärt der theoretische Chemiker Dr. Vinicius Vaz da Cruz, Postdoc im Team von Prof. Dr. Alexander Föhlisch. Gemeinsam mit dem RIXS-Experten Dr. Sebastian Eckert, ebenfalls Postdoc in Föhlischs Team, haben sie nun ein raffiniertes neues Verfahren entwickelt, das die Auswertung um ein Vielfaches beschleunigt.

Auswertung binnen Minuten

„Mit unserer Methode dauert es ein paar Minuten und wir brauchen dafür keinen Großrechner, es funktioniert auf dem Desktoprechner“, sagt Eckert. Die HZB-Wissenschaftler haben das Verfahren an dem Molekül 2-Thiopyridon, getestet, einem Modellmolekül für Protonentransfer-Prozesse, die in lebenden Zellen und Organismen eine entscheidende Rolle spielen. Die Ergebnisse sind trotz der kurzen Rechenzeit präzise und zielführend.

Simulationen während der Messung möglich

„Dies ist ein gewaltiger Fortschritt“, betont Föhlisch. „So können wir vorab bereits viele Optionen durchspielen und das Molekül sozusagen kennenlernen. Außerdem ist es mit diesem Verfahren auch möglich, weitaus komplexere Moleküle zu simulieren und die experimentell gewonnenen Daten sinnvoll zu interpretieren.“  Experimentalphysiker Eckert fügt an:„ Auch während der Messung können wir jetzt die Simulationen mitlaufen lassen und gleich sehen, wo es eventuell besonders spannend ist, experimentell genauer hinzuschauen.“

Das Verfahren stellt eine Erweiterung der weit verbreiteten, höchst effizienten Methode der zeitabhängigen Dichtefunktionaltheorie dar, welche um ein Vielfaches schneller Ergebnisse liefert, als konventionelle Methoden zur Simulation von RIXS Spektren. „Dies lässt uns die Methode weitestgehend automatisieren“, sagt Vaz da Cruz: „Für den Nutzer lässt sich das Verfahren wie eine Blackbox benutzen.“

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Ein Rekordjahr für unser Reallabor für BIPV
    Nachricht
    22.01.2026
    Ein Rekordjahr für unser Reallabor für BIPV
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.
  • Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    Science Highlight
    19.01.2026
    Kompakter Elektronenbeschleuniger zur Aufbereitung von PFAS-belastetem Wasser
    So genannte Ewigkeitschemikalien oder PFAS-Verbindungen sind ein zunehmendes Umweltproblem. Ein innovativer Ansatz für die Aufbereitung von Wasser und Böden in PFAS-belasteten Gebieten kommt jetzt aus der Beschleunigerphysik: Hochenergetische Elektronen können PFAS-Moleküle durch Radiolyse in unschädliche Bestandteile zerlegen. Ein am HZB entwickelter Beschleuniger auf Basis eines SHF-Photoinjektors kann den dafür nötigen Elektronenstrahl liefern, zeigt nun eine Studie in PLOS One.
  • Verdrehte Nanoröhren, die eine Geschichte erzählen
    Nachricht
    09.12.2025
    Verdrehte Nanoröhren, die eine Geschichte erzählen
    In Zusammenarbeit mit deutschen Wissenschaftlern haben EPFL-Forscher gezeigt, dass die spiralförmige Geometrie winziger, verdrillter Magnetröhren genutzt werden kann, um Daten zu übertragen, die nicht auf Elektronen, sondern auf Quasiteilchen, den Magnonen, basieren.