HZB beteiligt sich an DFG-Gruppe zu Materialwissenschaften in der Zahnmedizin

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt.

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt. © P. Zaslansky/Charité.

Zahnärztliche Füllungen oder Kronen sind großen Belastungen ausgesetzt. Mit Ansätzen aus Materialwissenschaften und Zahnmedizin wollen Forschende an der Charité – Universitätsmedizin Berlin und der Technischen Universität (TU) Berlin nun die eingesetzten Materialien untersuchen und beständiger machen. Die interdisziplinäre Forschungsgruppe „InterDent“, an der auch das Helmholtz-Zentrum Berlin (HZB) und das Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPI-KG) beteiligt sind, wird von der Deutschen Forschungsgemeinschaft (DFG) mit 2,1 Millionen Euro zunächst für drei Jahre gefördert. 

Mit dem Ziel, verbesserte Werkstoffe für die Zahnmedizin zu schaffen, werden die Wechselwirkungen verschiedener Materialien mit den umgebenden Geweben beleuchtet. In einem Teilprojekt soll die Vorhersage der Alterung harter Zahnbestandteile – der sogenannten Zahnhartsubstanz – in der Nähe von Zahnfüllungen in Abhängigkeit vom verwendeten Füllungsmaterial ermöglicht werden. Dazu werden die mikrostrukturellen und chemischen Eigenschaften des Dentins – also Zahnbeins –, die sich im Zuge der – als Sklerosierung bezeichneten – Verhärtung zunehmend verändern, zerstörungsfrei und mit hoher Empfindlichkeit und Auflösung untersucht. „Auf diese Weise wollen wir ein Modellsystem für die Dentinsklerose schaffen, das uns ein besseres Verständnis der Veränderungen von Struktur und Element-Zusammensetzung ermöglichen soll“, sagt Dr. Ioanna Mantouvalou vom HZB, die das Teilprojekt gemeinsam mit Dr. Paul Zaslansky leitet, dem Sprecher der Forschungsgruppe und Projektleiter am Institut für Zahn-, Mund- und Kieferheilkunde der Charité.

Charité /red.


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.