Instrument an BESSY II zeigt, wie Licht MoS2-Dünnschichten katalytisch aktiviert

</p> <p>Mit einem neuen Instrument an BESSY II lassen sich Molybd&auml;n-Sulfid-D&uuml;nnschichten untersuchen, die als Katalysatoren f&uuml;r die solare Wasserstoffproduktion interessant sind. Ein Lichtpuls l&ouml;st einen Phasen&uuml;bergang von der halbleitenden in die metallische Phase aus und verst&auml;rkt so die katalytische Aktivit&auml;t.</p> <p>

Mit einem neuen Instrument an BESSY II lassen sich Molybdän-Sulfid-Dünnschichten untersuchen, die als Katalysatoren für die solare Wasserstoffproduktion interessant sind. Ein Lichtpuls löst einen Phasenübergang von der halbleitenden in die metallische Phase aus und verstärkt so die katalytische Aktivität.

© Martin Künsting /HZB

Dünnschichten aus Molybdän und Schwefel gehören zu einer Klasse von Materialien, die als (Photo)-Katalysatoren infrage kommen. Solche günstigen Katalysatoren werden gebraucht, um mit Sonnenenergie auch den Brennstoff Wasserstoff zu erzeugen. Allerdings sind sie bislang noch wenig effizient. Ein neues Instrument an BESSY II am Helmholtz-Zentrum Berlin (HZB) zeigt nun, wie ein Lichtpuls die Oberflächeneigenschaften der Dünnschicht verändert und das Material katalytisch aktiviert.

MoS2-Dünnschichten sind aus abwechselnden Lagen von Molybdän-Atomen und Schwefel-Atomen aufgebaut, die sich zu zweidimensionalen Schichten übereinanderlegen. Das Material ist ein Halbleiter. Aber schon ein blauer Lichtpuls mit überraschend geringer Intensität genügt, um die Eigenschaften der Oberfläche zu verändern und sie metallisch zu machen. Dies hat nun ein Team an BESSY II gezeigt.

Preiswerte Katalysatoren

Das Spannende daran: In dieser metallischen Phase sind die MoS2-Schichten auch katalytisch besonders aktiv. Sie lassen sich dann zum Beispiel als Katalysatoren für die Spaltung von Wasser in Wasserstoff und Sauerstoff einsetzen. Damit könnten sie als preiswerte Katalysatoren die Produktion von Wasserstoff ermöglichen – einem Energieträger, dessen Verbrennung kein CO2, sondern nur Wasser produziert.

Neu an BESSY II: SurfaceDynamics@FemtoSpeX

Die Physikerin Dr. Nomi Sorgenfrei und ihr Team haben an BESSY II ein neues Instrument aufgebaut, um die Veränderungen an den Proben durch Bestrahlung mit ultrakurzen, schwachen Lichtpulsen mithilfe von zeitaufgelöster Elektronenspektroskopie für die chemische Analytik (trESCA) exakt zu vermessen. Diese Lichtpulse werden an BESSY II mit Femtoslicing erzeugt und sind daher von geringer Intensität. Das neue Instrument „SurfaceDynamics@FemtoSpeX“ kann auch aus diesen schwachen Lichtpulsen in kurzer Zeit aussagekräftige Messdaten von Elektronenenergien, Oberflächenchemie und zeitlichen Veränderungen gewinnen.

Phasenübergang beobachtet

Die Analyse der experimentellen Daten zeigte, dass der Lichtpuls zu einer vorübergehenden Ladungsakkumulation an der Oberfläche der Probe führt, was den Phasenübergang an der Oberfläche von einem halbleitenden Zustand in einen metallischen Zustand auslöst.

„Dieses Phänomen sollte auch in anderen Vertretern dieser Materialklasse von p-dotierten halbleitenden Dichalkogeniden auftreten, sodass sich daraus Möglichkeiten ergeben, um die Funktionalität und katalytische Aktivität gezielt zu beeinflussen“, erklärt Sorgenfrei.

arö

Das könnte Sie auch interessieren

  • Catherine Dubourdieu erhält ERC Advanced Grant
    Nachricht
    30.03.2023
    Catherine Dubourdieu erhält ERC Advanced Grant
    Prof. Dr. Catherine Dubourdieu leitet am HZB das Institut für energieeffiziente Informationstechnik und ist Professorin am Fachbereich Physikalische und Theoretische Chemie der Freien Universität Berlin. Die Physikerin und Materialwissenschaftlerin hat sich auf funktionale Oxide und deren Anwendungen in der Informationstechnologie spezialisiert. Für ihr Forschungsprojekt LUCIOLE hat sie jetzt einen renommierten ERC Advanced Grant erhalten. LUCIOLE zielt darauf ab, ferroelektrische polare Texturen mit konventionellen Siliziumtechnologien zu kombinieren.
  • Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Science Highlight
    20.03.2023
    Grüner Wasserstoff: Wie photoelektrochemische Zellen wettbewerbsfähig werden könnten
    Mit Sonnenlicht lässt sich grüner Wasserstoff in photoelektrochemischen Zellen (PEC) direkt aus Wasser erzeugen. Bisher waren Systeme, die auf diesem 'direkten Ansatz' basieren, energetisch nicht wettbewerbsfähig. Die Bilanz ändert sich jedoch, sobald ein Teil des Wasserstoffs in PEC-Zellen in-situ für erwünschte Reaktionen genutzt wird. Dadurch lassen sich wertvolle Chemikalien für die chemische und pharmazeutische Industrie produzieren. Die Zeit für die Energie-Rückgewinnung des direkten Ansatztes mit der PEC-Zelle kann damit drastisch verkürzt werden, zeigt eine neue Studie aus dem HZB.
  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.