Virtual tours: Experience the HZB in 360 degrees!

Unfortunately, due to Corona, we are currently unable to receive groups of visitors at HZB and guide them through our centre. Despite Corona, we would like to provide you with insights into HZB. Simply follow our 360-degree tours and experience how we conduct research at the BESSY II accelerator. Further tours are being planned.

"Make yourself comfortable and start your own virtual tour through our world of research! We invite you to move through the 360-degree worlds and pause at one station or another to discover something new," says Sandra Fischer from the Communications Department. She designed and realised the tours together with an external partner.

The first tour is through the BESSY II accelerator facility. Further tours, also at the Wannsee site, are being planned. "With this offer, we want to remain open to interested people even in times of a pandemic and arouse curiosity about the world of science."

Tour through the BESSY II accelerator: Follow the path of light

Have you always wanted to walk through an accelerator? The tours "The Path of Light" and "The Experiment" both start in the heart of BESSY II, the control room. Go to the place where electrons race through and emit light at almost the speed of light - the storage ring tunnel. There you will see the effort that has to be made to generate the coveted light. You can experience all the things we can explore with this light in the tour "The Experiment".

Here you get to the tour.  We hope you enjoy it!

Note for our cooperation partners at BESSY II:

360-degree views ("spherical panoramas") of various beamlines are available in the media library. You are welcome to use these to explain your work at BESSY II (e.g. in lectures or for groups of visitors). If you have any questions, please contact Sandra Fischer.

sz

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.