Virtuelle Rundgänge: Erleben Sie das HZB in 360 Grad!

Leider können wir zurzeit Corona-bedingt keine Besuchergruppen am HZB empfangen. Trotzdem wollen wir für Sie erlebbar bleiben! Folgen Sie einfach unseren Rundgängen in 360 Grad und erleben Sie, wie wir am Beschleuniger BESSY II forschen. Weitere Rundgänge sind in Planung.

„Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung! Wir laden Sie ein, sich durch die 360-Grad-Welten zu bewegen und an der ein oder anderen Station zu verweilen, um Neues zu entdecken“, sagt Sandra Fischer aus der Abteilung Kommunikation. Sie hat zusammen mit einem externen Partner die Rundgänge konzipiert und realisiert.

Den Auftakt macht eine Tour durch die Beschleunigeranlage BESSY II. Weitere Rundgänge, auch am Standort Wannsee, sind in Planung. „Wir wollen mit diesem Angebot in Pandemie-Zeiten ein stückweit für interessierte Menschen geöffnet bleiben und Neugier auf die Welt der Wissenschaft wecken.“

Tour durch den Beschleuniger BESSY II: Folgen Sie dem Weg des Lichts

Wollten Sie immer schon mal durch einen Beschleuniger gehen? Die Touren „Der Weg des Lichts“ und „Das Experiment“ starten beide im Herzen von BESSY II, dem Kontrollraum. Begeben Sie sich an den Ort, an dem die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – den Speicherringtunnel. Dort sehen Sie, welchen Aufwand man betreiben muss, um das begehrte Licht zu erzeugen. Was wir mit diesem Licht alles erforschen können, erleben Sie in der Tour „Das Experiment“.

Hier geht's zu den Rundgängen. Wir wünschen Ihnen viel Spaß dabei!

 Hinweis für unsere Kooperationspartner an BESSY II:

In der Mediathek stehen für Sie 360-Grad-Ansichten („Kugelpanoramen“) verschiedener Experimentierbereiche zur Verfügung. Sie können diese gern zur Erklärung Ihrer Arbeit verwenden (z.B. in Vorträgen oder für Besuchergruppen). Bei Fragen wenden Sie sich an Sandra Fischer.

sz

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.