Perowskit-Solarzellen: Rolle der Wasserstoffbrückenbindungen beleuchtet

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand.

Der Ausschnitt zeigt ausgewählte Orbitale in MAPI-Perowskit im Grundzustand. © HZB

Auf der Basis von Röntgenmessungen an Methylammonium-Perowskit-Halbleitern hat ein HZB-Team nun gezeigt, welche Rolle Wasserstoffbrückenbindungen in diesen Materialien spielen. Außerdem fand die Forschungsgruppe, dass Strahlenschäden durch weiche Röntgenstrahlung bei dieser empfindlichen Materialklasse noch schneller auftreten als erwartet. Beide Ergebnisse liefern wichtige Hinweise für die Perowskit-Materialforschung für Solarzellen.

Metallhalogenid-Perowskit (MHP)-Solarzellen werden in Labors auf der ganzen Welt entwickelt. Diese Materialklasse ist kostengünstig, leicht zu verarbeiten und hat bereits nach wenigen Jahren der Entwicklung Wirkungsgrade von über 20 Prozent erreicht. Durch Variation der chemischen Zusammensetzung können die optoelektronischen Eigenschaften genau auf das Sonnenlicht und die jeweilige Anwendung abgestimmt werden. Die höchsten Wirkungsgrade erreichen hybride Perowskite, die Methylammonium-Kationen (MA) enthalten, aber die Anwesenheit von MA ist auch mit Instabilität verbunden.

Nun hat eine internationale Kollaboration, an der auch die HZB-Abteilung Grenzflächen-Design unter der Leitung von Marcus Bär beteiligt ist, neue Erkenntnisse über die elektronische Struktur und insbesondere die Wasserstoffbrückenbindungen in Methylammonium-Blei-Iodid-Perowskit-Filmen gewonnen. Dafür kombinierten sie Messdaten mit einer theoretischen Modellierung. Die Proben stammten aus dem Labor des Perowskit-Pioniers Henry Snaith, Universität Oxford, und die röntgenspektroskopischen Messungen (XES) wurden noch vor der Pandemie an der Advanced Light Source am Lawrence Berkeley National Laboratory durchgeführt. Die Modellierung der elektronischen Struktur und der ultraschnellen Bewegung von Wasserstoffatomen innerhalb der Struktur leistete Michael Odelius, Universität Stockholm.

Signatur der Wasserstoffbrückenbindungen entdeckt

„Durch die Kombination von elementspezifischen weichen röntgenspektroskopischen Messungen mit Molekulardynamik und Dichtefunktionaltheorie-Modellierung konnten wir neue Einblicke in die elektronische Struktur und Dynamik der organischen MHP-Komponente gewinnen", sagt Regan Wilks, HZB-Physiker und Erstautor der Studie. Insbesondere gelang es dem Team, spektrale Signaturen der Wasserstoffbrückenbindungen zwischen dem organischen Methylammonium-Molekül und dem anorganischen Gerüst des Perowskits zu detektieren. Messungen auf der Femtosekunden-Zeitskala lieferten zusätzlich Hinweise auf signifikante dynamische Änderungen der Struktur während der Messung.

Strahlenschäden treten schneller auf als erwartet

Um diese ultraschnellen Signale von den Effekten der Schädigung durch den hochintensiven Synchrotron-Röntgenstrahl zu trennen, charakterisierte die Gruppe auch diese Schädigungseffekte gründlich. Diese Schädigungen können auf der Zeitskala von 100 ms auftreten, also viel schneller als die Dauer eines Standardexperiments. Das bedeutet: zu dem Zeitpunkt, an dem die Messung beginnt, Ergebnisse zu liefern, ist der Schaden bereits eingetreten.  

„Es ist wichtig, diese Effekte in einer Publikation zu dokumentieren, auch wenn es nicht das wissenschaftlich interessanteste Ergebnis ist, weil es eine sehr wichtige Information für andere Gruppen sein kann, die vielleicht ähnliche Experimente durchführen oder unsere Ergebnisse bestätigen wollen", betont Wilks. Um Strahlenschäden und damit Artefakte während der Messung zu vermeiden, wurde die Probe unter dem weichen Röntgenstrahl während der Messung senkrecht zum Photonenstrahl bewegt, so dass die Bestrahlung eines jeden Punktes auf einen Sekundenbruchteil beschränkt blieb.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.
  • Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Nachricht
    27.01.2026
    Ein Rekordjahr für das HZB-Reallabor für bauwerksintegrierte Photovoltaik
    Unsere Solarfassade in Berlin-Adlershof hat im Jahr 2025 so viel Strom erzeugt wie in keinem der vergangenen vier Betriebsjahre.