Einblick in das HZB: Virtuelle Rundgänge und 360 ° Panoramen

Wir bieten nun auch virtuelle Touren an.

Wir bieten nun auch virtuelle Touren an. © HZB

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama.

Von vielen HZB-Laboren gibt es jetzt ein 360° Panorama. © HZB

Corona-bedingt können wir leider keine Besuchergruppen am HZB empfangen und durch unser Zentrum führen. Wir möchten trotz Corona für Sie erlebbar bleiben und Ihnen Einblicke ins HZB ermöglichen. Machen Sie es sich gemütlich und starten Sie Ihren eigenen virtuellen Rundgang durch unsere Welt der Forschung. Bewegen Sie sich durch 360-Grad-Bilder, schauen Sie sich in Ruhe um und verweilen Sie an ausgewählten Stationen.

Touren durch BESSY II:

Wollten Sie immer schon mal durch einen Beschleuniger gehen? Dann geht’s los! Die beiden Touren „Der Weg des Lichts“ und „Das Experiment“ starten im Kontrollraum von BESSY II. Weiter geht es zum Ort, wo die Elektronen mit beinahe Lichtgeschwindigkeit durchrasen und Licht aussenden – dem Speicherringtunnel. Folgen Sie dem Licht und sehen Sie, wie wir damit experimentieren.

Viel Spaß beim digitalen Rundgang durch BESSY II  !

Labore am Campus Wannsee:

Am HZB-Standort Wannsee untersuchen wir zum Beispiel neuartige Katalysatormaterialien, die für die Erzeugung von Wasserstoff mit Sonnenlicht oder die elektrochemische Umwandlung von Kohlendioxid in Kraftstoffe benötigt werden. Wir arbeiten an besseren Batteriesystemen und analysieren Materialien mit unterschiedlichen Röntgenmethoden. In Zusammenarbeit mit der Berliner Charité bieten wir die Augentumortherapie mit Protonen an, die an einem Teilchenbeschleuniger stattfindet. Schauen Sie sich in unseren Laboren um und entdecken Sie, wie wir forschen. Ein blaues Schild in den 360°-Panoramen weist auf Videoclips oder Grafiken hin, die wichtige Prozesse zeigen.

Viel Spaß bei den digitalen Rundgängen durch die Labore am Standort Wannsee.

Labore in 360°-Ansichten

Einige Forschungsstätten des HZB können als 360-Grad-Panoramen besichtigt werden. Diese Panoramen enthalten keine Erklärungen und stehen vor allem unseren Forscher*innen und Kooperationspartnern für Führungen oder Vorträge zur Verfügung.

red.

Das könnte Sie auch interessieren

  • Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Science Highlight
    16.03.2023
    Perowskitsolarzellen durch Schlitzdüsenbeschichtung – ein Schritt zur industriellen Produktion
    Solarzellen aus Metallhalogenid-Perowskiten erreichen hohe Wirkungsgrade und lassen sich mit wenig Energieaufwand aus flüssigen Tinten produzieren. Solche Verfahren untersucht ein Team um Prof. Dr. Eva Unger am Helmholtz-Zentrum Berlin. An der Röntgenquelle BESSY II hat die Gruppe nun gezeigt, wie wichtig die Zusammensetzung von Vorläufertinten für die Erzeugung qualitativ-hochwertiger FAPbI3-Perowskit-Dünnschichten ist. Die mit den besten Tinten hergestellten Solarzellen wurden ein Jahr im Außeneinsatz getestet und auf Minimodulgröße skaliert.
  • Super-Energiespeicher: Ladungstransport in MXenen untersucht
    Science Highlight
    13.03.2023
    Super-Energiespeicher: Ladungstransport in MXenen untersucht
    MXene können große Mengen elektrischer Energie speichern und lassen sich dabei sehr schnell auf- und entladen. Damit vereinen MXene die Vorteile von Batterien und Superkondensatoren und gelten als spannende neue Materialklasse für die Energiespeicherung: Das Material ist wie eine Art Blätterteig aufgebaut, die MXene-Schichten sind durch dünne Wasserfilme getrennt. Ein Team am HZB hat nun an der Röntgenquelle BESSY II untersucht, wie Protonen in diesen Wasserfilmen wandern und den Ladungstransport ermöglichen. Ihre Ergebnisse sind in der renommierten Fachzeitschrift Nature Communications veröffentlicht und könnten die Optimierung solcher Energiespeichermaterialien beschleunigen.
  • TU Berlin ernennt Renske van der Veen zur Professorin
    Nachricht
    22.02.2023
    TU Berlin ernennt Renske van der Veen zur Professorin
    Seit zwei Jahren leitet Dr. Renske van der Veen am HZB eine Forschungsgruppe für zeitaufgelöste Röntgenspektroskopie und Elektronenmikroskopie. Im Zentrum ihrer Forschung stehen katalytische Prozesse, die zum Beispiel die Produktion von grünem Wasserstoff ermöglichen. Nun wurde sie zur S-W2 Professorin im Institut für Optik und Atomare Physik (IOAP) an der Technischen Universität Berlin ernannt.