Battery research - SkaLiS project funded with 2.2 million euros

Pouch cell Lab

Pouch cell Lab © HZB

SkaLiS Project Team

SkaLiS Project Team © HZB

Powerful, compact, and affordable batteries are needed for the energy transition. Groups at the Helmholtz-Zentrum Berlin (HZB) led by Prof. Yan Lu, Dr. Ingo Manke, and Dr. Sebastian Risse are conducting this research. They are investigating and developing novel types of electrode materials based on sulphur and silicon. Risse is now also coordinating a large project involving teams from HZB as well as from the University of Potsdam near Berlin, the Technische Universität Berlin, the Technische Universität Dresden and the Fraunhofer Institute for Material and Beam Technology IWS Dresden.

The SkaLiS project will commence July 2021 and receive a total of 2.2 million euros in funding over the next three years from the German Federal Ministry of Education and Research (BMBF). SkaLiS stands for "Operando analysis-supported, trans-scale and scalable electrode design for increasing the performance of lithium-sulphur pouch cells".

The participating research groups in SkaLiS (FKZ: 03XP0398) intend to produce a lithium-sulphur (Li-S) demonstrator battery in pouch cell format whose cathode simultaneously exhibits structure at several scales. This approach should enable the Li-S battery to be considerably safer, offer longer service life, and higher performance than previous battery cells. For the assessment of industrial relevance, the consortium is supported by an industrial advisory board consisting of representatives from Airbus, Rolls-Royce, Wingcopter, Customcells and E-Lyte.

The
HZB Institute for Electrochemical Energy Storage has already set up the appropriate infrastructure to accomplish this work. It is known as the Pouch-Cell Line – experimental batteries in flat pouches can be produced in the facility from raw materials in a few simple steps (see video clip).

In addition, the SkaLiS project will also make a six-figure investment in a new detector system for a small-angle X-ray instrument. It is currently being set up at the Berlin-Wannsee campus in Risse's electrochemistry group and is particularly suited for studying materials such as battery electrodes.

Prof. Yan Lu, head of the Institute, and her team of chemists produce the cathode material themselves. It consists of finely ground sulphur particles embedded in a carbon powder substrate that features specific porosities. After the experimental battery cell has been fabricated in Berlin and Dresden, the electrochemical performance, safety, and service life are analysed in detail by the research groups headed by Manke and Risse using operando methods. This allows immediate conclusions to be drawn about cell fabrication and cathode material synthesis, which are also important for industrial-scale applications. 

arö

  • Copy link

You might also be interested in

  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Joint Kyiv Energy and Climate Lab goes live
    News
    28.11.2025
    Joint Kyiv Energy and Climate Lab goes live
    Helmholtz-Zentrum Berlin and the National University of Kyiv-Mohyla Academy established on 27 November a Joint Energy and Climate Lab.