Green hydrogen: Why do certain catalysts improve in operation?

© CC BY 3.0, via Wikimedia Commons

</p>
<p>Schematic of the electrochemical restructuring of erythrite. The fine needle-like structure melts during the conversion from a crystalline material to an amorphous one, which is porous like a Swiss cheese.</p>
<p>

Schematic of the electrochemical restructuring of erythrite. The fine needle-like structure melts during the conversion from a crystalline material to an amorphous one, which is porous like a Swiss cheese.

© HZB

Crystalline cobalt arsenide is a catalyst that generates oxygen during electrolytic water splitting in the production of hydrogen. The material is considered to be a model system for an important group of catalysts whose performance increases under certain conditions in the course of electrolysis. Now a HZB-team headed by Marcel Risch has observed at BESSY II how two simultaneous mechanisms are responsible for this. The catalytic activity of the individual catalysis centres decreases in the course of electrolysis, but at the same time the morphology of the catalyst layer also changes. Under favourable conditions, considerably more catalysis centres come into contact with the electrolyte as a result, so that the overall performance of the catalyst increases.

As a rule, most catalyst materials deteriorate during repeated catalytic cycles – they age. But there are also compounds that increase their performance over the course of catalysis. One example is the mineral erythrite, a mineral compound comprising cobalt and arsenic oxides with a molecular formula of (Co3(AsO4)2∙8H2O). The mineral stands out because of its purple colour. Erythrite lends itself to accelerating oxygen generation at the anode during electrolytic splitting of water into hydrogen and oxygen.

Samples from Costa Rica

The young investigator group headed by Dr. Marcel Risch at the HZB together with groups from Costa Rica has now analysed these catalysing mineral materials in detail at BESSY II and made an interesting discovery.

Using samples produced by colleagues in Costa Rica consisting of tiny erythrite crystals in powder form, Javier Villalobos, a doctoral student in Risch's group at the HZB, coated the electrodes with this powder. He then examined them before, during, and after hundreds of electrolysis cycles in four different pH-neutral electrolytes, including ordinary soda water (carbonated water).

Loss of original structure

Over time, the surface of each catalytically active layer exhibited clear changes in all the electrolytes. The original crystalline structure was lost, as shown by images from the scanning electron microscope, and more cobalt ions changed their oxidation number due to the applied voltage, which was determined electrochemically. Increased oxygen yield was also demonstrated over time in soda water (carbonated water), though only in that electrolyte. The catalyst clearly improved.

Observations at BESSY II

With analyses at BESSY II, the researchers are now able to explain why this was the case: using X-ray absorption spectroscopy, they scanned the atomic and chemical environment around the cobalt ions. The more active samples lost their original erythrite crystal structure and were transformed into a less ordered structure that can be described as platelets just two atoms thick. The larger these platelets became, the more active the sample was. The data over the course of the catalysis cycles showed that the oxidation number of the cobalt in these platelets increased the most in soda water, from 2.0 to 2.8. Since oxides with an oxidation number of 3 are known to be very good catalysts, this explains the improvement relative to the catalysts that formed in the other electrolytes.

Oxygen yield doubled

In soda water, the oxygen yield per cobalt ion decreased by a factor of 28 over 800 cycles, but at the same time 56 times as many cobalt atoms changed their oxidation number electrochemically. Macroscopically, the electrical current generation and thus the oxygen yield of the electrode doubled.

From needles to swiss cheese

In a nutshell, Risch explains: “Over time, the material becomes like Swiss cheese with many holes and a larger surface area where many more reactions can take place. Even if the individual catalytically active centres become somewhat weaker over time, the larger surface area means that many more potential catalytically active centres come into contact with the electrolyte and increase the yield.”

Risch suggests that such mechanisms can also be found in many other classes of materials consisting of non-toxic compounds, which can be developed into suitable catalysts.

arö

  • Copy link

You might also be interested in

  • Susanne Nies appointed to EU advisory group on Green Deal
    News
    12.11.2025
    Susanne Nies appointed to EU advisory group on Green Deal
    Dr. Susanne Nies heads the Green Deal Ukraina project at HZB, which aims to support the development of a sustainable energy system in Ukraine. The energy expert has now also been appointed to the European Commission's scientific advisory group to comment on regulatory burdens in connection with the net-zero target (DG GROW).

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.